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Networks which generalize poorly
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Memorizing networks are more
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Recent work has demonstrated that deep neural networks (DNNs) are 
capable of memorizing extremely large datasets such as ImageNet 
(Zhang et al., 2017). Despite this capability, DNNs in practice achieve low 
generalization error on tasks ranging from image classification (He et al., 
2015) to language translation (Wu et al., 2016). These observations raise 
a key question: why do some networks generalize while others do not?

Here, we demonstrate that a network’s reliance on single directions in 
activation space is a good predictor of its generalization performance, 
across networks trained on datasets with different fractions of corrupted 
labels, across ensembles of networks trained on datasets with 
unmodified labels, and over the course of training. While dropout only 
regularizes this quantity up to a point, batch normalization implicitly 
discourages single direction reliance, in part by decreasing the class 
selectivity of individual units. Finally, we find that class selectivity is a 
poor predictor of task importance, suggesting not only that networks 
which generalize well minimize their dependence on individual units by 
reducing their selectivity, but also that individually selective units may 
not be necessary for strong network performance.

•  Networks which generalize well are less reliant on single directions 
   than those which generalize poorly
•  While dropout only regularizes single direction reliance up to the 
   dropout fraction, batch normalization implicitly regularizes reliance on   
   single directions
 •  It may do this by discouraging sparse representations in which   
    information is focused in single units
•  The selectivity of single units is a poor predictor of that unit’s 
    importance to the network output

Figure 2: Networks were trained on MNIST (2-hidden layer MLP, a), CIFAR-10 (11-layer 
convolutional network, b), and ImageNet (50-layer ResNet, c) with various fractions of corrupted 
labels. In a, all units in all layers were ablated, while in b and c, only feature maps in the last three 
layers were ablated. Error bars represent standard deviation across 10 random orderings of 
units to ablate.

Figure 5: a, Cumulative ablation curves for MLPs trained on unmodified and fully corrupted 
MNIST with dropout fractions ∈ {0.1, 0.2, 0.3}. Colored dashed lines indicate number of units 
ablated equivalent to the dropout fraction used in training. Note that curves for networks 
trained on corrupted MNIST begin to drop soon past the dropout fraction with which they were 
trained. b, Cumulative ablation curves for networks trained on CIFAR-10 with and without batch 
normalization. Error bars represent standard deviation across 4 model instances and 10 
random orderings of feature maps per model.

Figure 6: Distributions of class selectivity (a) and mutual information (b) for networks trained 
with (blue) and without batch normalization (purple). Each distribution comprises 4 model 
instances trained on uncorrupted CIFAR-10.

Figure 7: Impact of ablation as a function of class selectivity for MNIST MLP (a), CIFAR-10 
convolutional network (b-c), and ImageNet ResNet (d-e). c and e show regression lines for 
each layer separately.
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Figure 3: 200 networks with identical topology were trained on unmodified CIFAR-10. a, 
Cumulative ablation curves for the best and worst 5 networks by generalization error. Error bars 
represent standard deviation across 5 models and 10 random orderings of feature maps per 
model. b, Area under cumulative ablation curve (normalized) as a function of generalization 

Figure 4: a, Train (blue) and test (purple) loss, along with the normalized area under the 
cumulative ablation curve (AUC; green) over the course of training for an MNIST MLP. Loss 
y-axis has been cropped to make train/test divergence visible. b, AUC and test loss are 
negatively correlated over training. c, AUC and test accuracy are positively correlated across a 
hyperparameter sweep of CIFAR-10 models (96 hyperparameters with 2 repeats each). AUC 
selected the top 1, 5, and 10 settings 13%, 83%, and 98% of the time, repspectively with an 
average difference between the best model selected by AUC and the optimal model of only 1 ± 
1.1% (mean ± std).Ac
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