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Abstract
Learning representations that can decompose a
multi-object scene into its constituent objects and
recompose them flexibly is desirable for object-
oriented reasoning and planning. Built upon ob-
ject masks in the pixel space, existing metrics
for objectness can only evaluate generative mod-
els with an object-specific “slot” structure. We
propose to directly measure compositionality in
the representation space as a form of objectness,
making such evaluations tractable for a wider
class of models. Our metric, COAT (Composi-
tional Object Algebra Test), evaluates if a generic
representation exhibits certain geometric prop-
erties that underpin object compositionality be-
yond what is already captured by the raw pixel
space. Our experiments on the popular CLEVR
(Johnson et.al., 2018) domain reveal that exist-
ing disentanglement-based generative models are
not as compositional as one might expect, sug-
gesting room for further modeling improvements.
We hope our work allows for a unified evaluation
of object-centric representations, spanning gen-
erative as well as discriminative, self-supervised
models.

1. Introduction
Understanding a complex, visual scene in terms of the ob-
jects in it and their properties is an important scene under-
standing problem. A lot of work in representation learn-
ing recently has focused on the property of “objectness”,
where the goal is to form abstract, low dimensional repre-
sentations z ∈ RD of input scenes x ∈ RN (D << N )
that parse the scene into its constituent objects such that
these object primitives can be recomposed together to parse
entirely novel scenes (Burgess et al., 2019; Bapst et al.,
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Figure 1. An illustration of the parallelogram in COAT. The trans-
formation from scene A to scene B is to add two blue rubber cubes,
so is the one from C to D. Hence in the representation space, we
would expect the translation vector zB − zA to be identical to
zD − zC . Further, we would expect the parallelogram not to hold
for A,B,C and hard negative D′. Here D′ is the pixel-level hard
negative, resulted from B −A+ C in the pixel space.

2019; Goyal et al., 2020; Greff et al., 2019; 2020; Kosiorek
et al., 2018; Singh et al., 2021; van Steenkiste et al., 2018;
Ali Eslami et al., 2016; Huang & Murphy, 2015). Such
representations can support reasoning and higher level tasks
such as counting (Chattopadhyay et al., 2017; Agrawal et al.,
2015), abstraction (Higgins et al., 2016; Vedantam et al.,
2020; 2018), puzzle solving (Barrett et al., 2018) and re-
inforcement learning (Bapst et al., 2019). More generally,
objectness is a promising inductive bias for generalization
to out-of-distribution scenes (Locatello et al., 2020; Chat-
topadhyay et al., 2017).

One can formalize the notion of object-centric representa-
tions or abstractions from the viewpoint of composition-
ality (Mikolov et al., 2013a) or disentanglement (Higgins
et al., 2016). For compositionality, we aim to learn represen-
tations featuring low-level primitives that can be composed
via simple vector operations to represent more complex
inputs. Critically, such a representation should be learn-
able from a small set of primitive combinations and enable
those vector operations to generalize to any combination
of primitives (Lake & Baroni, 2018; Radford et al., 2015;
Mitchell & Lapata, 2008). Disentanglement takes a stricter
view in which we not only aim to infer and compose differ-
ent factors of variation, but also require that these factors
are partitioned into distinct dimensions zi or K “slots”,
namely, zk ∈ RD

K of the representation space Z to recover
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B A C D’ D− + = ≈
(a) Weakly Occluded Scene

B A C D’ D− + = ≠
(b) Strongly Occluded Scene

Figure 2. An illustration of trivial compositionality vs object com-
positionality and the importance of occlusion for measuring the
latter. In (a), compositionality is trivial since an algebra B−A+C
in the pixel representation can obtain a D′ that is almost the same
as the D resulted from the transformation in the semantic space.
In (b), compositionality is non-trivial and requires object-centric
abstraction. An algebra B −A+ C in the pixel space results in a
D′ that is obviously different from the ground-truth D.

ground-truth, statistically independent factors of variation
that generate the observations. However, representations
may be compositional without being disentangled. For ex-
ample, applying a change of basis through a rotation to a
disentangled representation will yield a representation that
is still compositional but no longer disentangled. Neverthe-
less, the goal of uncovering true factors of variation in a data
driven manner remains conceptually appealing, and there
has been a lot of interest in learning disentangled, object-
centric representations (Locatello et al., 2020; Greff et al.,
2019; Singh et al., 2021).

Slot-based Approaches. Slot-based approaches to object-
ness aim to disentangle K statistically independent sub-
spaces or slots (Greff et al., 2019; Locatello et al., 2020)
zk ∈ RD

K such that each slot specializes to capture all rel-
evant ground truth properties of one of the objects in the
observed scene. Evaluation of such models is typically done
using clustering-based metrics by decoding each of the slots
back to the pixel space with a generator.

Slot-Free approaches. Although slot-based approaches to
measuring objectness are relatively simple to define and
evaluate, the strict requirement of slot-based delineation in
the representations limits its applicability to architectures
without slots. This downside is particularly relevant as most
commonly utilized models for visual recognition such as
residual networks (He et al., 2015) or newer models like
vision transformers (Dosovitskiy et al., 2020) lack such slot-
based structure. This challenge has led to a gap between
the generic architectures used for visual recognition and
slot-based approaches used for learning object-centric rep-

resentations. In this paper, we bridge this gap by measuring
compositionality in the emergent representations, providing
a unified treatment of slot-based and slot-free approaches.
We propose a new metric, COAT– Compositional Object
Algebra Test – and associated testing corpus based on the
CLEVR (Johnson et al., 2017) domain for measuring object-
centric compositionality.

If a representation is compositional with respect to objects,
we would expect that the change in a scene’s representation
when the same input space transformation is applied is con-
sistent across scenes. For example, consider four images A,
B, C, D where A:B::C:D (Figure 1). If two blue objects are
added to A to yield B and the same blue objects are added to
C (at the same locations) to yield D, then we would expect
some analogical structure to be present in the corresponding
representations as well. Taking a geometric perspective,
if this is true, we would expect

−−→
AB to be parallel to

−−→
CD.

Equivalently, if one can compose D from A, B, C through
translation operations in the latent space, to check their
equivariance, it should form a parallelogram. Such emer-
gent properties have previously been studied in the context
of word representations (and have indeed emerged without
any explicit slot-like structure or specific inductive bias in
some cases (Mikolov et al., 2013b)). We demonstrate that
one can evaluate object-centric representations against sim-
ilar geometric structures, by showing how to translate the
geometric desiderata into a concretely measurable device.

Interestingly, when measuring transformations across
closely related scenes, even a representation such as q(x) =
x can be trivially compositional. For example, Figure 2a
portrays a situation in which compositionality is trivially
achieved in the pixel space representation. This occurs be-
cause there is very little occlusion in this scene and as such,
the representation of objects in pixel-space is inherently
independent since the pixels corresponding to each object
are non-overlapping. Thus, when constructing a metric for
compositionality one needs to carefully measure to what
extent an approach captures more abstract, non-trivial com-
positionality. We do so by populating the testing corpus
with images like Figure 2b with stronger occlusion such that
the representations of objects is intertwined even in pixel
space, and use q(x) = x as a null, trivially compositional
representation to contextualize our metric. Any learned rep-
resentation, in order to exhibit non-trivial compositionality,
has to be able to reject the null hypothesis that it is no better
than the trivial model in order to receive a COAT score.

In terms of the metric itself, our key technical challenges are
centered around how to best measure the extent to which a
representation shows an (approximate) parallelogram struc-
ture. For instance, some representations might be very
closely concentrated in some part of the output feature space,
while others might be more spread out. Any comparisons
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of parallelogram structure have to take such global statistics
into account in order to be relevant over the course of train-
ing a particular model, and across different models spanning
different design choices (e.g., generative vs contrastive, slot-
based vs slot free, etc.). Moreover, a representation may
short-circuit the parallelogram test by discarding informa-
tion or not forming object abstraction at all. We address
these desiderata by normalizing our metric, correcting for
chance and a careful design of hard negative examples to
capture compositionality in object-centric representations.

Overall, our contributions are as follows:

• We propose a novel measure, COAT for evaluating
compositionality in emergent representations (see Sec-
tion 3.3 for a discussion of the benefits of measuring
compositionality over disentanglement)

• We demonstrate the importance of comparing to pixel-
space as a null representation when evaluating compo-
sitionality (Section 4)

• We evaluate a suite of emergent representations, span-
ning models with various assumptions and inductive
biases (Section 5)

• In an intriguing negative result, we demonstrate that
representations learned by state-of-the-art models for
disentangling objects are not as compositional as one
might expect, especially with respect to pixel-space
compositionality, hinting at the need for further model-
ing improvements (Table 2)

2. Related Work
Generative Models of Multi-Object Scenes. Generative
modeling of multi-object scenes is a long-standing problem
in computer vision (Zhu & Yuille, 1996; Tu & Zhu, 2002).
While the previous work focuses on segmenting the pixel
space to match the ground-truth, more recent interest has
shifted to representation learning – hypothesizing that struc-
tural constraints in the representations will facilitate transfer
to various visual reasoning (Barrett et al., 2018) or plan-
ning tasks (Schölkopf et al., 2021; Veerapaneni et al., 2019).
MONet (Burgess et al., 2019), IODINE (Greff et al., 2019)
and Slot Attention (Locatello et al., 2020), among other re-
cent works (Greff et al., 2017; Kim & Mnih, 2018; Engelcke
et al., 2019), demonstrate that one can learn disentangled,
object-specific slots in latent representations on perceptually
simple datasets like CLEVR (Johnson et al., 2017), although
progress needs to be made to generalize to more perceptually
challenging domains proposed by Karazija et al. (2021). In
contrast, our focus is not on perceptual difficulty, but in
simply measuring the extent to which compositionality is
captured by existing CLEVR-domain models1.

1With a minor modification, namely that we allow different
colors for the background

Disentanglement Metrics. Most of the slot-based object-
centric models discussed above decode the slots back to
the pixel space, and utilize clustering based approaches for
comparing segmentations, such as the Adjusted Rand Index
(ARI) (Hubert & Arabie, 1985) for evaluation. ARI aims to
measure the similarity between the pixel mask for an object
predicted by a generative model given a slot with the ground
truth mask for that object in the original image, and has a
number of desirable properties: it is bounded, normalized
and corrected for chance, but it only indirectly measures the
representations because a mapping back to the image space
is always needed (Burgess et al., 2019; Greff et al., 2019;
Locatello et al., 2020). In contrast, our metric is decoder-
free, does not assume a slot-based structure and measures
compositionality instead of disentanglement, broadening its
applicability to a much wider range of models and settings.
We anticipate this to facilitate more modeling avenues for
research on object-centric representation learning.

As opposed to objects, there is another line of work which
focuses on disentanglement at the attribute level, and which
typically models scenes with single objects (though not al-
ways). To evaluate how well factors of variation such as
pose, size, shape etc. are uncovered, these works adopt
approaches like fitting a linear classifier or performing ma-
jority vote classifiers on each latent dimension (Higgins
et al., 2016; Kim & Mnih, 2018; Chen et al., 2019), the
mean distance between the classification errors of the two
latent dimensions that are most predictable (Kumar et al.,
2018), mutual information between the representation and
the ground truth (Chen et al., 2016), and a dimension-wise
entropy reflecting the usefulness of the dimension to predict
a single factor to variation (Eastwood & Williams, 2018). In
contrast to these methods, our metric does not need a gener-
ative model, nor a partitioning of the latent space in terms of
individual factors of variation in the latent space2, nor anno-
tations of all the ground truth factors of variation. Moreover,
previous work focuses on attribute-level disentanglement
while we are concerned with object-centric, compositional
representation learning.

Qualitative Analogical Structures. Our metric comes with
an analogy test corpus which is inspired by pioneering work
from Mikolov et al. (2013b); Radford et al. (2015), where
they show the learned word embeddings enable simple linear
algebra for analogical reasoning. Such a paradigm was later
adopted by Eslami et al. (2018), Ha & Eck (2017) and
Achlioptas et al. (2018) for static images, sketches, and 3D
point clouds respectively. While these works largely provide
qualitative analysis/ visualizations of representations, we
aim to quantify the extent to which there exists such an
analogical structure in the representations.

2Note this is more challenging for slots in object-centric learn-
ing, as opposed to attribute disentanglement where the size of a
slot is usually one.
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Quantifying Compositionality. Andreas (2019) propose
a learning based method to identify the extent of composi-
tional structure in any generic, emergent representation, by
learning an approximated composition function. While their
approach is very generic and broadly applicable compared
to ours, our work makes a number of more specific inno-
vations to appropriately measure compositional structure
for object-centric representations. Firstly, we note that the
metric proposed in Andreas (2019) does not account for
pixel-level hard negatives, which is a potential shortcut test
constructed by applying the compositional operator in the
raw input space as opposed to the latent representation space
(which was not a concern for their applications). Further,
our metric corrects for representation collapse and by ad-
justing for chance, which the metric in Andreas (2019) does
not account for. That metric may give a high score to a col-
lapsed representation, say q(x) = 0. Finally, Keysers et al.
(2020) measure compositional generalization in sequence to
sequence tasks by constructing various evaluation tasks with
different difficulties for evaluation. In contrast, our evalu-
ation is towards objectness in learned, continuous valued
representations rather than the difficulty in compositional
generalization entailed by a sequence to sequence task.

3. Background
In this section, we make connections between disentangle-
ment representation learning (Locatello et al., 2020; Greff
et al., 2019), causal representation learning (Schölkopf et al.,
2021), compositionality (Lake & Baroni, 2018), and equiv-
ariance (Jayaraman & Grauman, 2015) – notions which
underpin both the models we evaluate, as well as the proper-
ties we choose to measure in our COAT metric.

3.1. Disentanglement

Attribute-level disentanglement. For attribute-level dis-
entanglement approaches (Higgins et al., 2016), the goal is
to recover the ground truth factors of variation used to gen-
erate the dataset (e.g., the size, color orientation and shape
of 2-D shapes (Higgins et al., 2016)). This is achieved
by learning representations using variational autoencoders
with a factorized prior p(z) =

∏
i p(zi) (Higgins et al.,

2016) which indirectly encourages the aggregate posterior∫
x
q(z|x)p(x)dx that generates the representations to be

factorized as well (Hoffman & Johnson, 2016) or by encour-
aging such behavior more explicitly (Chen et al., 2019).

Object-Centric disentanglement A parallel line of work fo-
cuses on object-centric disentanglement (Greff et al., 2019;
Locatello et al., 2020), where instead of attempting to fit
all the information corresponding to an entire object into a
single, independent latent dimension, one attempts to learn
K independent sub-spaces or ‘slots’, i.e., z = [z0, · · · , zK ],
with the hope of specializing each object to a slot in the

input scene. In addition to this independence assumption
used in the latent space, such work also often utilizes func-
tional constraints, which are inspired by the independent
causal mechanism (ICM) principle (Schölkopf et al., 2021).
Essentially, they start with (1) a pixel-space representation
ui ∈ RN to disentangle each object separately in the pixel
observations x ∈ RN and (2) a vector of latent abstract
causal variables zi ∈ RD

K , with a functional constraint on
the decoder, namely that ui = fi(zi, ϵ), where ϵ is a source
of noise. The ui are then combined with a function g which
is often hand-coded to be a mixture of gaussians (Burgess
et al., 2019; Greff et al., 2019; Locatello et al., 2020) (where
the weight of each gaussian is a pixel-level mask, and the
predicted means are the pixel values) or a more complex
generative process (Ali Eslami et al., 2016; Huang & Mur-
phy, 2015). Learning often proceeds by fitting g, f and an
image encoder q jointly, where q maps input images x to
latent representations z. Intuitively, the functional constraint
means that the mechanics of image formation are the same,
regardless of the object in question. In addition, the popular
Slot Attention (Locatello et al., 2020) also has a strong in-
ductive bias based on self-attention on the encoder which
aids emergence of effective slot representations.

Object- vs Attribute- disentanglement Conceptually, pop-
ular attribute-level disentanglement models such as β-
VAE (Higgins et al., 2016) or β-TC-VAE (Kim & Mnih,
2018) can be thought of as learning statistically indepen-
dent slots of size 1, with a relaxation of the functional con-
straint that “object-level” disentanglement models have. As
such, it is not a priori obvious that so called “attribute-level”
disentanglement models would fail when trained on multi-
object scenes to uncover object-centric representations. To
our knowledge, our work provides the first evaluation to
quantitatively measure objectness in such “attribute-level”
models, along with an extensive study of the extent to which
“object-level” disentanglement models are compositional.

3.2. Compositionality

Compositional representations of scenes that enable the flex-
ible addition or removal of objects to/from a scene and the
ability to reason with these objects are potentially useful
for a large number of applications including counting (Chat-
topadhyay et al., 2017), reasoning (Barrett et al., 2018), and
out of distribution generalization (Lake & Baroni, 2018;
Gordon et al., 2019), and potentially useful inductive biases
for effective regularization with techniques like techniques
like mixup (Zhang et al., 2017). Beyond these benefits, a
compositional representation is conceptually easier to mea-
sure, compared to a disentangled representation which often
needs access to the ground truth factors of variation, which
are not always available in a lot of real world applications.
Finally, compositional representations can also aid inter-
pretability (Andreas, 2019; Kottur et al., 2017).
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Disentanglement implies (approximate) compositional-
ity. Moreover, disentanglement is closely related to com-
positionality. Consider a continuous valued disentangled
representation z where each scalar zi represents a factor of
variation. Let zA be the representation of image A and zC
be the representation of image C. Let z0 be the dimension
in the disentangled feature that corresponds to the size of
an object, for instance. Increasing z0 by a value ϵ should
increase the size of the object for both image A as well as C,
yielding images B and D respectively. Thus, a translation
by ϵ in this case gives us compositionality in terms of size in
the input domain. Strictly speaking, one might have to trans-
late by a different amount ϵ and say, δ to obtain the same
increase in shape for A and C, in general but the resultant
difference vectors are still parallel to each other (Figure 1).
In our work, we measure both notions of compositionality,
by checking for an exact parallelogram structure as well
as simply checking if the vectors are parallel (Section 4).
While we explain attribute level disentanglement for ease
of explanation, a similar argument can be made for “slot”
based disentanglement with functional constraints (see Ap-
pendix A.1 for an informal proof). Moreover, any full rank
linear transformation of a disentangled representation (such
as a rotation) will still be compositional (while retaining
all the information in the original representation) but not
disentangled (see Appendix A.2). Thus, exact disentangle-
ment implies perfect compositionality with respect to the
ground-truth factors of variation.

Connection to Equivariance. The notion of compositional-
ity we discuss here is an instantiation of group equivariance
which has been well studied in the representation learn-
ing literature (Jayaraman & Grauman, 2015; Gordon et al.,
2019). Specifically, our measure of compositionality is
more formally expressed as to translation equivariance in
the representation space. Since a slot-based, disentangled
representation is compositional with repsect to translations
(as discussed above), we measure compositionality with re-
spect to the same translation operation for slot-free models,
essentially testing to what extent a slot-free model behaves
compositionally as a slot-based model ideally would. How-
ever, in principle, one could evaluate with other operations
in the latent space or even learn them (Andreas, 2019). Nev-
ertheless, we believe our contributions such as choice of
hard negatives, proper normalization etc. will prove to be
useful regardless of these orthogonal design choices.

3.3. Benefits of measuring compositionality over
disentanglement

Overall, measuring compositionality instead of disentan-
glement for object-centric representation learning has the
following benefits:

• Directly evaluates representations (which is what will be

used for downstream tasks) without requiring a decoder
that maps the representations back to pixel space.

• Allows one to evaluate objectness in representations when
slot-based structure is not present.

• Related to the above, one can potentially handle scenes
with highly variable numbers of objects in a distributed
representation since one does not need to pre-specify the
number of object-specific slots3.

• While evaluation of slot-based disentanglement requires
annotation of all the objects in the scene and their proper-
ties, measuring compositionality only requires us to know
the relationship between two scenes which is much easier
to annotate or obtain from say, videos. More specifically,
annotating changes in scenes (in videos) is easier than
densely annotating all objects (in images), and temporally
close frames could be useful hard negatives.

4. Methods
Desiderata. While measuring equivariance is necessary for
a useful compositional representation, it is not sufficient in
practice. We impose the following additional desiderata to
identify useful, compositional representations:

1. Avoiding Shortcuts: It is possible to “shortcut”, for ex-
ample the analogy test in Figure 1 by ignoring the color
of the blue objects being added and simply learning a
translation operator for “adding two objects” instead
of “adding two blue objects”. Such a representation
would still be compositional, but potentially not useful
for downstream tasks. As discussed in Section 1, another
shortcut is when one performs no better than say a null
model q(x) = x in terms of capturing abstract compo-
sitional structure. If the model exhibits parallelogram
structure, but doesn’t capture the relevant information re-
garding the scene, our metric should penalize the model.

2. Consistent Blank Slots: When evaluating a model with
say K slots, it is important to have a consistent repre-
sentation of scenes with any number k < K objects.
Specifically, for a scene with k slots, there are K − k
“blank slots”. One would desire a consistent representa-
tion of such slots across different input scenes, otherwise
it would be hard to preserve the consistency in the conse-
quence of applying the same vector operation.

3. Calibration: Finally, it is a non-trivial question in cases
where the parallelogram structure is not exactly followed
(which will almost always be the case in practice) how
to quantify the degree to which A, B, C, D (Figure 1)
follow the parallelogram structure in order to obtain a
measure that is calibrated to give sensible measurements
both across training checkpoints and across models.

3Although some works (Ali Eslami et al., 2016) do not have
such conceptual limitations, they do not work as well (so far) as
approaches based on a fixed number of slots.
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4.1. COAT measure

The COAT measure comprises three parts: 1) A corpus
with carefully designed analogy tests, 2) A binary pass/fail
hypothesis test to detect shortcuts to compositionality, 3) a
normalized measure reported for the cases where a model
passes step 2. We discuss each of these elements below.

Analogy Test. We create a corpus with a set of 1600 anal-
ogy / compositionality tests4, each containing images A,
B, C, D (Figure 1). Following the observations in Sec-
tion 1 we utilize images with sufficient occlusion (Fig-
ure 2) where the null representation q(x) = x is not suffi-
cient to capture compositionality. Finally, in our analogy
test we assume that B is related to A, and D is related
to C via a given transformation add(obj0, obj1, obj2, ...)
(without loss of generality) which adds, for example, two
blue objects to a base scene A and C respectively (Fig-
ure 1). Denoting zA as the representation for scene A,
we would like the corresponding representations to satisfy
zB−zA+zC = zD. The degree to which this is satisfied is
measured through a loss function L(zA, zB , zC , zD). We ei-
ther measure approximate parallelogram structure or the de-
gree to which

−−→
BA and

−−→
DC are parallel. For the former, we

use L(zA, zB , zC , zD) = ||zB−zA+zC−zD||2; for the lat-
ter we use L(zA, zB , zC , zD) = acos(zB − zA, zD − zC).
Check Appendix B for example test cases.

Shortcut Detection. As discussed above, a model might
appear equivariant but not be compositional in a manner
useful for downstream tasks. To test for this, we em-
ploy hard negatives (denoted D′ ̸= D), and compute the
losses L(zA, zB , zC , zD) and L(zA, zB , zC , zD′) for a one-
sample proportion hypothesis test. Our null hypothesis
H0 is that there is no difference between the two values,
i.e.,, Pr[L(zA, zB , zC , zD) < L(zA, zB , zC , zD′)] = 0.5,
with the alternative hypothesis being that the hard nega-
tives incur a higher loss, namely, Pr[L(zA, zB , zC , zD) <
L(zA, zB , zC , zD′)] > 0.5. We use the standard test statis-
tic for the one-sample proportion test with a significance
level=0.005 to reject or fail to reject the null hypothesis.

Concretely, we utilize the following hard negatives (D′):

• Object-level: in D′ there is one object different from
or dropped from D. This tests that the representation
captures properties of all objects in the scene, and
not just say a subset of objects that are used for the
transofrmation Figure 1.

• Attribute-level: D′ has one object with one attribute
(color, material, shape or size) different from D. This

4These 1600 test cases are obtained by rejection sampling from
100,000 scenes under a strong occlusion criterion. Moreover, in
progressively increasing the test volume n, we find that the COAT
score as well as hard-negative tests appear to be stable with respect
to the number of samples (n) used to compute them at n = 1000.

tests that the representation is sensitive to the properties
of the object, and not just the location (for example).

• Pixel-level: D′ = B −A+ C in the pixel space. This
validates that the evaluated representation is better than
a trivial representation q(x) = x.

If a model fails these tests, COAT will not provide an accu-
rate evaluation of the model’s compositionality. Therefore,
we only apply the COAT metric to models which can pass
the above test. Empirically, we find the hard negative tests
for attributes like shape, material and pixel-level representa-
tions are most difficult to pass.

Normalization and Correction for Chance.

When comparing across different models, we need to cali-
brate the metric to ensure that model-specific biases such as
differences in the concentration of features do not confound
our estimates of whether the structure we desire approxi-
mately exists. Denoting by D̂ a random image from the
minibatch of examples, we use the following normalization
and chance correction:

COAT = 1− L(zA, zB , zC , zD)

ED̂

[
L(zA, zB , zC , zD̂

] , (1)

The key idea being that we compute the average loss in-
curred by a random datapoint to calibrate the extent to
which one claims that the desired structure is present. In
practice, we use the minibatch size of 64 for calculating
ED̂ [·]. In terms of the two concrete losses for “perfectness”,
L2−COAT and for “parallelness”, acos−COAT, we hypoth-
esize for downstream tasks such as counting “perfectness”
might be more important (since magnitude of vectors is
important) but in other reasoning tasks relaxing it to “paral-
lelness” might be sufficient.

4.2. Sanity Checks and Baselines

As a sanity check, we apply the COAT metric to (1) a disen-
tangled vector representation that concatenates the symbolic
attributes of all objects and (2) the vector representation of
a random full-rank linear projection from (1). Note that
(1) is a disentangled representation while (2) is entangled,
but they are both compositional by our definition (see Ap-
pendix A.2), so they should both obtain a perfect score of
1.0 in our metric. Indeed, this is validated by our experi-
ments. In contrast, disentanglement metric such as training
a linear regressor along with a Hungarian matching towards
the set of object attribute vectors (Locatello et al., 2020)
would rate (1) highly, but not (2), despite the presence of
compositional structure in a different basis set.

We next provide a baseline in terms of the COAT score for
the trivial representation q(x) = x (e.g., taking pixel-space
as our representation). Overall the score for the baseline is
75.47% in terms of L2 and 36.28% for acos, demonstrating
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that pixel-space is already somewhat compositional. Note
that here we do not use the pixel-baseline image as a hard
negative for a hypothesis test, but as a trivial representation
to compare COAT scores for models against.

5. Experiments
Our goal is to identify key modeling choices for object-
centric compositionality (Section 3) and evaluate them in a
unified manner (Section 4). From a conceptual standpoint,
several factors of variation across models stand out:

1. Whether one has a “slot structure” in the representation in
conjunction with functional independence in the decoder
(Slot Structure)

2. Whether there is an independence prior on the latents
or some other mechanism to enforce disentangling a
factorized aggregate posterior distribution (e.g., β-TC-
VAE (Chen et al., 2019)) (Factorized Prior)

3. Whether the model is generative or discriminative
to isolate if one requires the use of a genera-
tive model for learning object-centric representations
(Training Paradigm)

4. Whether we train the models on an IID dataset or a
highly correlated training dataset (Train Set) (see
Appendix C for more details).

Table 2 (left side) breaks down several models of interest
along these axes, i.e., β-TC-VAE (Chen et al., 2019), vanilla
Auto-Encoder (Kramer, 1991) which we implement as a
β-TC-VAE with β = 0, Slot Attention (Locatello et al.,
2020), IODINE (Greff et al., 2019), and MoCo v2 (He
et al., 2020; Chen et al., 2020) in a matrix of these factors.
All models are trained with the default architectures and
hyperparameters except that in β-TC-VAE we use latent
dimension 256, and use the same encoder for MoCo. We
modified CLEVR to include multiple background colors,
which forces models to represent the background explicitly
for compositional evaluation (see Appendix C for some
examples and an ablation study against the COAT measure).
To further support the usefulness of COAT, we implemented
a TRE measure (Andreas, 2019), learning a transformer to
approximate the compositional function. See Appendix D.

5.1. Autoencoder and β-TC-VAE

We generally found that a β-TCVAE as well as a vanilla
autoencoder (β = 0) fail to learn object-centric representa-
tions. We sweep over β ∈ {0, 1, 2, 3} and generally found
a trend that with β = 1, 2 the models performs the best on
the most challenging pixel-level hard negative test, albeit
not passing it (Figure A7b and Figure A6b). Thus, without
the “slot” structure or functional independence assumptions
it appears that vanilla autoencoders and β-TC-VAE style
models do not achieve object-centric compositionality.

5.2. Slot Attention

Next, we study the slot attention model that has a slot struc-
ture in the latent space, functional independence in the de-
coder and a strong inductive bias on the encoder q which
infers the slots. This model in previous evaluations using
ARI has achieved really strong results and thus given that
it is likely “disentangled” one would expect it to also be
“compositional” (Section 3).

Is slot attention compositional? We align the slots for
the same objects across A, B and C, D respectively to fa-
cilitate the application of the COAT metric, we perform
greedy matching (see Appendix E for more details). Over-
all, while slot attention passes the hard-negative statistical
test (Table 2), in terms of the COAT score, the vanilla repre-
sentation from slot-attention does not outperform the trivial
pixel-level representation, achieving an L2-COAT score of
48.55 ± 14.11 as opposed to a pixel-level score of 75.47.

What causes the poor performance of slot-attention?
One of the key bottlenecks is that slot attention often as-
signs two different slots to the same object (Figure A10).
This redundancy in the latent representation causes difficul-
ties with a proper compositional structure emerging in the
latent space. We hypothesize this redundancy is caused by
the lack of a sparsity prior on the latent space (Locatello
et al., 2020) compared to other models such as Greff et al.
(2019). To account for this when computing COAT, we de-
tect duplicates by measuring the cosine similarity between
different pairs of slots zi ∈ RD

K and zj ∈ RD
K and replacing

all duplicates with the mean of all other slots. This improves
the L2-COAT score to 60.70 ± 15.15 (Table 2), which is
still worse than the pixel baseline. This result also indicates
that the ARI metric (Locatello et al., 2020) is not sensitive to
redundancy in the representations. In essence, it measures
recall but not precision of the latent factors – while COAT
tests for precision as well as recall.

Another issue is that slot attention does not have a consistent
representation of “blank slots” which contain no objects,
but instead has a more general notion of “invisible slots”
which do not contribute to the reconstruction / generation
because they are masked out, but still have some content in
them (Figure A11). This makes blank slots difficult to detect
and standardize without access to masks from the generative
decoder. However, utilizing the decoder in this manner does
elicit performance on the L2-COAT metric that surpasses
the pixel level baseline (77.02 ± 0.72 vs 75.47). Check Fig-
ure A12 for an visualization of the matching, where we can
see the imperfect score may be caused by missing objects.
This indicates that on it’s own, the slot attention model does
not exhibit object-centric compositionality without access to
the weights of the particular decoder that has been learned
in a model run. While this is not an issue for generative
modeling, these redundancies and external dependency on
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Table 1. Models, their inductive biases, their training paradigms, their training sets, and their performance on ARI and COAT. “HN” is
the Hard Negative Test; models need to pass all hard negative tests to obtain a COAT score, otherwise it is indicated with “-”. Since
representations directly obtained from slot attention do not perform well on the COAT metric, we also tried some post-processing: *
indicates duplication removal, †indicates removing “invisible slots” with zero mask weights. (w/o occlusion) and (w/ occlusion) indicate
non-occluded (Figure 2a) and strongly occluded (Figure 2b) test cases. Statistics are Mean and SEM summarized over 5 random seeds.

Slot Structure Factorized Prior Training Train ARI HN L2-COAT HN acos-COAT
z = [z0, · · · , zK ] p(z) = ΠK

k=1p(zk) Paradigm Set (%) L2 (%) acos (%)

Pixel baseline (w/ occlusion) N/A N/A N/A N/A N/A N/A 75.47 N/A 36.28

Pixel baseline (w/o occlusion) N/A N/A N/A N/A N/A N/A 97.18 N/A 73.17

Auto-encoder(w/ occlusion) No No Generative IID N/A Fail - Fail -
β-TC-VAE (w/ occlusion) No Yes Generative IID N/A Fail - Fail -

Slot attention (w/ occlusion) Yes No Generative IID 95.53± 1.84 Pass 48.55± 14.11 Pass 21.53± 10.73

Slot attention* (w/ occlusion) Yes No Generative IID 95.53± 1.84 Pass 60.70± 15.55 Pass 31.18± 8.01

Slot attention*†(w/ occlusion) Yes No Generative IID 95.53± 1.84 Pass 77.07± 0.72 Pass 43.12± 0.78

Slot attention*†(w/o occlusion) Yes No Generative IID 95.53± 1.84 Pass 83.84± 6.23 Pass 47.45± 4.34

Slot attention*†(w/ occlusion) Yes No Generative CORR 69.12± 9.34 Pass 64.82± 9.20 Pass 31.95± 7.21

IODINE (w/ occlusion) Yes Yes Generative IID 92.21± 0.15 Pass 47.52± 0.29 Pass 16.33± 0.33

IODINE (w/ occlusion) Yes Yes Generative CORR 40.08± 8.90 Fail - Pass 9.16± 1.08

MoCo v2 ConvNet (w/ occlusion) No N/A Discriminative IID N/A Fail - Pass 14.05± 1.25

the generator might hurt performance of on downstream
transfer learning or out-of-distribution generalization tasks
where one usually does not have privileged access to a gen-
erator. Together, our results demonstrate that despite the
strong inductive biases present in slot attention models, they
do not exhibit improved object-centric compositionality rel-
ative to the raw pixel representation, demonstrating both the
importance of comparison with the raw pixel baseline for
contextualizing compositionality measures and highlighting
potential for modeling improvements.

5.3. IODINE

In contrast to slot attention, IODINE (Greff et al., 2019) is a
full Bayesian generative model with not only independence
constraints in the variational encoder and decoder but also
a factorized prior (key difference from slot attention being
that the inductive bias in the encoder for computing the
slots is more explicitly designed in IODINE instead of using
a generic self-attention mechanism). Given the explicit
prior, we found that IODINE more consistently represents
“blank slots” (Figure A15) – however, while it passes all
hard-negative tests (Table 2), it is not able to disentangle
foreground objects from background properly (as also noted
in the original paper (Greff et al., 2019) and a more recent
work (Yu et al., 2021)), which sets it back in terms of the L2-
COAT score (47.52 ± 0.29). This is more or less equivalent
to the vanilla slot attention model 48.55 ± 14.11 and again
substantially lower than the pixel baseline of 75.47.

5.4. MoCo v2 with ConvNet

Next, we evaluate the MoCo v2 (He et al., 2019) self-
supervised learning model trained on our IID set using the

same architecture used for the β-TC-VAE. Over the course
of training, the model appears to pass the hard-negative
test in terms of the acos-COAT score (Table 2) (which the
β-TC-VAE models failed to do) – indicating some initial
promise. However, the model is still substantially worse
than the corresponding raw pixel baseline (14.05 ± 1.25 vs
36.28) suggesting need for a more directed exploration of
this direction, which is out of scope for our current paper.

5.5. Influence of correlated training set

Next, we induce correlations between objects in a given
scene, to understand how patterns in the data impact dif-
ferent models’ ability to learn object-centric compositional
representations. Specifically, we generate a set of training
images with extremely correlated and cluttered objects that
have the same color and material (see Appendix C.2). For
slot-attention, even when we utilize the generative model
to detect “invisible slots”, we still observe a drop in the
performance (64.82 ± 9.20 vs 77.07 ± 0.72), indicating
that the model is not as robust as one might have hoped.
However, slot attention is still better than IODINE which
fails the pixel-level hard negative test in this setting5. This
again indicates that the inductive bias used in slot attention
based on positional embeddings and self-attention is more
robust than those in the encoder of IODINE.

6. Conclusion
In this work we presented a new metric, COAT, for mea-
suring object-level compositionality in emergent representa-

5Locatello et al. (2020) show a similar comparison to IODINE
using the ARI metric in grayscale images.
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tions. Our metric comprises of two parts: 1) a hypothesis
test, testing for a null hypothesis that the representations
being evaluated do not capture any more compositionality
than carefully crafted, trivial baselines such as pixel-space,
and 2) a measure of the extent to which compositional or
analogical structure is present in the representations with re-
spect to translations in the feature space. We applied COAT
to a number of object-centric representations – spanning a
large set of modeling assumptions, finding that, somewhat
surprisingly, state-of-the-art approaches for object-centric
disentanglement are often not compositional beyond trivial
pixel level baselines even in the presence of severe occlu-
sion. We hope that our metric, COAT galvanizes future
work on object-centric representation learning from a more
unified, model-agnostic viewpoint.
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A. Relation Between Compositionality and Disentangling
A.1. Slot-based Disentangling Models are Compositional with Respect to Object Additions

Consider a slot-based feature space z = [z0, · · · , zK ] where each zi ∈ RD
K with a functional constraint that uses individual

slots to decode them back into the pixel space, namely fi(zi) = ui, where ui ∈ RN as explained in Section 3 in the main
paper. Further, assume that fi = fj for all i, j ∈ 1, · · · ,K (this constraint is typically followed by models as well). Also,
assume that the model represents all blank slots consistently, specifically, assume that zk = 0 where 0 represents a vector in
R

D
K where each entry is 0, without loss of generality.

Now, assume image A is the original image we add an object to, in order to obtain image B, for the analogy test in Figure 1.
Further assume that A has k objects. Thus, by assumption that blank slots are consistently represented, ∀k′ > k, z′k = 0.
Let δ ∈ RD

K be the offset to be added to a blank slot zk+1 in A in order to obtain B, which essentially corresponds to the
addition of a blue object. Then, in order to add the same object to image C with k̂ objects, one would add the same offset
vector δ to the blank slot zk̂+1. This is true, since we assume that the function fi(zi) is independent for each slot, and also
fi = fj for all i, j ∈ 1, · · · ,K.

Thus, by construction one achieves a parallelogram in the full original vector space z in which the representation exists,
meaning that an object-centric disentangled slot-based representation is also compositional with respect to addition and
subtration of objects from the scene.

A.2. Full-rank Transformations of Disentangled Representations are Compositional

Given a disentangled representation q(x), and let zA = q(A), zB = q(B), zC = q(C) and zD = q(D), where z ∈ RD as
in the rest of the paper. be the representations for four scenes in the analogy test Figure 1. Now, since disentangling implies
compositionality, we have:

zB − zA + zC = zD (2)

Next, consider a full rank matrix W ∈ RD×D. Then, multiplying by W on both sides above, we get,

WzB −WzA +WzC = WzD (3)

Now, notice that in general, WzB is no longer disentangled with respect to the original factors of variation (e.g., W could
be a rotation matrix or a permutation matrix), but the resultant representation still satisfies the parallelogram property.
Moreover, given invertibility of W because of it being full rank, it has all the information present in the original disentangled
space meaning that it avoids collapse of the representation which might enable it to lose information of attributes or find
some other “shortcut” to pass the analogy test trivially.
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B. Example Test Cases

A B C D

D’ D’ D’ D’ D’ D’ D’

Positive tuple

Hard negatives

drop object color material shape size pixel
Figure A1. Example of the test corpus of COAT. A,B,C,D form the positive tuple, where the same transformation leads A to B and C
to D. In the second row there are hard negatives D′, where “drop” is dropping one object from D, “object” is changing one object from
D, “color” is changing the color of one object from D, “material” is changing the material of one object from D, “shape” is changing the
shape of one object from D, “size” is changing the size of one object from D, “pixel” is the result of B −A+ C.

A B C D

D’ D’ D’ D’ D’ D’ D’

Positive tuple

Hard negatives

drop object color material shape size pixel
Figure A2. Example of the test corpus of COAT. A,B,C,D form the positive tuple, where the same transformation leads A to B and C
to D. In the second row there are hard negatives D′, where “drop” is dropping one object from D, “object” is changing one object from
D, “color” is changing the color of one object from D, “material” is changing the material of one object from D, “shape” is changing the
shape of one object from D, “size” is changing the size of one object from D, “pixel” is the result of B −A+ C.
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C. CLEVR with Colorful Background
C.1. Independently Identically Distributed Dataset

Figure A3. Example of the IID training data with colorful background

C.2. Correlated Dataset

Figure A4. Example of the correlated training data with colorful background

C.3. Impact on COAT of using colorful background

To investigate the impact of colorful background on COAT, we apply the COAT measure to a test corpus with only white
background. The COAT score of slot-based models (e.g. IODINE) are not affected much by this change, but slot-free models
improve by ≈3% (although they still fail the hard-negative tests). IODINE segments white background inconsistently in
correlated images (see Fig. A15), which might explain this lack of improvement.

D. Results on Tree Reconstruction Error (TRE)
For completeness, we implemented a TRE measure, learning a transformer for the compositional function.

Table 2. Models, variants and Tree Reconstruction Error (TRE)
Slot attention vanilla 5.79± 1.23 β-VAE β = 0 10.32± 3.56

no dup 4.68± 2.59 β = 1 2.25± 1.86
no dup no inv 2.37± 1.76 β = 2 2.75± 0.47

β = 3 2.15± 1.92

As discussed in the main paper, unlike TRE, COAT: 1) is more related to disentanglement since it focuses on translation
equivariance instead of learning a composition function, 2) it utilizes hard negatives , and 3) it performs normalization.

E. Greedy Matching Algorithm
When applying COAT metric to slot-based representations, a 4-way slot matching needs to be conducted to find the lowest
matching cost. In this work, this is realized by iteratively picking one slot greedily from each representation zA, zB , zC , zD
without replacement. And the criterion for this matching is the L2 residual ||zB − zA + zC − zD||2 from these slots.
Empirically, we find this greedy matching algorithm perform very well even if it does not guarantee global optimum.
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F. More Empirical Results
Here we provide the training curves of adjusted COAT metric and the sampled success rate p̂ on hard negative tests.

F.1. Training Curves of Autoencoder and VAEs

(a) COAT l2 score evolves with training epochs (b) p̂ on pixel negative l2 test evolves with training epochs

(c) p̂ on object negative l2 test evolves with training epochs (d) p̂ on drop negative l2 test evolves with training epochs

(e) p̂ on color negative l2 test evolves with training epochs (f) p̂ on material negative l2 test evolves with training epochs

(g) p̂ on shape negative l2 test evolves with training epochs (h) p̂ on size negative l2 test evolves with training epochs

Figure A5. COAT l2 for Autoencoder and VAEs
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(a) COAT acos score evolves with training epochs (b) p̂ on pixel negative acos test evolves with training epochs

(c) p̂ on object negative acos test evolves with training epochs (d) p̂ on drop negative acos test evolves with training epochs

(e) p̂ on color negative acos test evolves with training epochs (f) p̂ on material negative acos test evolves with training epochs

(g) p̂ on shape negative acos test evolves with training epochs (h) p̂ on size negative acos test evolves with training epochs

Figure A6. COAT acos for Autoencoder and VAEs
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F.2. Visualization of Autoencoder and VAEs
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(a) Visualization of Autoencoder (β = 0)

𝐵

𝐴

𝐶

𝐷

obs recon

−

=

+

(𝐷

obs recon obs recon obs recon

(b) Visualization of β-TC-VAE (β = 1)
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(c) Visualization of β-TC-VAE (β = 2)

𝐵

𝐴

𝐶

𝐷

obs recon

−

=

+

(𝐷

obs recon obs recon obs recon

(d) Visualization of β-TC-VAE (β = 3)

Figure A7. Visulization of Autoencoder and VAEs. Odd columns are obserations A,B,C,D and pixel-level hard negative D′. Even
columns are reconstructed A,B,C,D and decoded D̄ from zB − zA + zC . Interestingly, when β = 0, the decoded zB − zA + zC looks
similar to the pixel-level hard negatives, while β > 0 gives more natural images in the decoded zB − zA + zC .
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F.3. Training Curves of Slot Attention

(a) COAT l2 score evolves with training epochs (b) p̂ on pixel negative l2 test evolves with training epochs

(c) p̂ on object negative l2 test evolves with training epochs (d) p̂ on drop negative l2 test evolves with training epochs

(e) p̂ on color negative l2 test evolves with training epochs (f) p̂ on material negative l2 test evolves with training epochs

(g) p̂ on shape negative l2 test evolves with training epochs (h) p̂ on size negative l2 test evolves with training epochs

Figure A8. COAT l2 for Slot Attentions
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(a) COAT acos score evolves with training epochs (b) p̂ on pixel negative acos test evolves with training epochs

(c) p̂ on object negative acos test evolves with training epochs (d) p̂ on drop negative acos test evolves with training epochs

(e) p̂ on color negative acos test evolves with training epochs (f) p̂ on material negative acos test evolves with training epochs

(g) p̂ on shape negative acos test evolves with training epochs (h) p̂ on size negative acos test evolves with training epochs

Figure A9. COAT acos for Slot Attentions
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F.4. Imperfect Matching in Slot Attention without any Post-processing
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Figure A10. Visualization of Slot Attention’s observation, combined reconstruction, masked reconstruction and reconstruction of each
slot by columns and A,B,C,D by rows. These are after a greedy matching. White captions are index and the cosine similarity to the
nearest slots. Black captions are the mask mass. The matching is generally good, and it can be observed that duplicated slots seem to be
the bottleneck.

F.5. “Invisible Slots” in Slot Attention
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Figure A11. Visualization of Slot Attention’s observation, combined reconstruction, masked reconstruction and reconstruction of each
slot by columns and A,B,C,D, decoded zA − zB + zC by rows. These are greedy matching after removing duplicated. White captions
are index and cosine similarity to the nearest slots. Black captions are the mask mass. Red boxes highlight “invisible slots”, whose mask
weights are zero, but apparently have different unmasked reconstructions. This inconsistency may cause the matching to fail. Green boxes
highlight “pseudo blank slots”, which are designed to be consistent.

F.6. Greedy Matching in Slot Attention after Removing Duplicate and Invisible Slots
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Figure A12. Visualization of Slot Attention’s observation, combined reconstruction, masked reconstruction and reconstruction of each slot
by columns and A,B,C,D, decoded zA − zB + zC by rows. These are greedy matching after removing duplicated and invisible slots.
White captions are index and cosine similarity to the nearest slots. Black captions are the mask mass. The matching is almost perfect,
but we can still see the discrepency between 4th and 5th row due to (1) missing a yellow cube (2) uncertainty about the occluded green
cylinder in A.
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F.7. Training Curves of IODINE

(a) COAT l2 score evolves with training epochs (b) p̂ on pixel negative l2 test evolves with training epochs

(c) p̂ on object negative l2 test evolves with training epochs (d) p̂ on drop negative l2 test evolves with training epochs

(e) p̂ on color negative l2 test evolves with training epochs (f) p̂ on material negative l2 test evolves with training epochs

(g) p̂ on shape negative l2 test evolves with training epochs (h) p̂ on size negative l2 test evolves with training epochs

Figure A13. COAT l2 for IODINE
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(a) COAT acos score evolves with training epochs (b) p̂ on pixel negative acos test evolves with training epochs

(c) p̂ on object negative acos test evolves with training epochs (d) p̂ on drop negative acos test evolves with training epochs

(e) p̂ on color negative acos test evolves with training epochs (f) p̂ on material negative acos test evolves with training epochs

(g) p̂ on shape negative acos test evolves with training epochs (h) p̂ on size negative acos test evolves with training epochs

Figure A14. COAT acos for IODINE
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F.8. Visualization of IODINE
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Figure A15. Visualization of IODINE’s observation, combined reconstruction, masked reconstruction and reconstruction of each slot
by columns and A,B,C,D, decoded zA − zB + zC by rows. The emergent “blank slots” are consistent – they are almost white in the
unmasked reconstructions – so the matching is good in general. However, the objectness in slots is not consistent. It seems every slot has
some background content in the masked reconstruction. Some occluded objects are not disentangled. Some objects are over-segmented
into multiple slots and these slots cannot be detected with cosine similarity as duplicates. All these lead to the discrepency between D and
decoded zA − zB + zC , which may explain the unsatisfying performance of IODINE on our metric.
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F.9. Training Curves of MoCo with ConvNet

(a) COAT l2 score evolves with training epochs (b) p̂ on pixel negative l2 test evolves with training epochs

(c) p̂ on object negative l2 test evolves with training epochs (d) p̂ on drop negative l2 test evolves with training epochs

(e) p̂ on color negative l2 test evolves with training epochs (f) p̂ on material negative l2 test evolves with training epochs

(g) p̂ on shape negative l2 test evolves with training epochs (h) p̂ on size negative l2 test evolves with training epochs

Figure A16. COAT l2 for MoCo with ConvNet
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(a) COAT acos score evolves with training epochs (b) p̂ on pixel negative acos test evolves with training epochs

(c) p̂ on object negative acos test evolves with training epochs (d) p̂ on drop negative acos test evolves with training epochs

(e) p̂ on color negative acos test evolves with training epochs (f) p̂ on material negative acos test evolves with training epochs

(g) p̂ on shape negative acos test evolves with training epochs (h) p̂ on size negative acos test evolves with training epochs

Figure A17. COAT acos for MoCo with ConvNet


