
lo-fi: distributed fine-tuning without communication

Mitchell Wortsman∗1 Suchin Gururangan1 Shen Li2 Ali Farhadi1 Ludwig Schmidt1

Michael Rabbat2 Ari S. Morcos2

Abstract

When fine-tuning large neural networks, it is common to
use multiple nodes and to communicate gradients at each
optimization step. By contrast, we investigate completely
local fine-tuning, which we refer to as lo-fi. During lo-fi,
each node fine-tunes independently without any communi-
cation. Then, the weights are averaged across nodes at
the conclusion of fine-tuning. When fine-tuning DeiT-base
and DeiT-large on ImageNet, this procedure matches accu-
racy in-distribution and improves accuracy under distribu-
tion shift compared to the baseline, which observes the same
amount of data but communicates gradients at each step.
We also observe that lo-fi matches the baseline’s perfor-
mance when fine-tuning OPT language models (up to 1.3B
parameters) on Common Crawl. By removing the communi-
cation requirement, lo-fi reduces resource barriers for fine-
tuning large models and enables fine-tuning in settings with
prohibitive communication cost.

1. Introduction
Many of the best performing machine learning models

today come from a two step procedure: First, pre-train on
a large, heterogeneous dataset to learn a good representa-
tion. Next, fine-tune to adapt the model to a task of inter-
est [21, 32, 33, 68]. This paper operates within the second
step of this procedure—fine-tuning—which is increasingly
important with drastic improvements in pre-trained mod-
els, e.g., CLIP [51], GPT-3 [7], OPT [72], and PaLM [9].
Indeed, recent advances such as Minerva [36] or Instruct-
GPT [47] have come from fine-tuning rather than training
from scratch.

Most work developing learning methods still operates in
the paradigm of training from scratch. Accordingly, both
use similar algorithmic techniques despite important differ-
ences in the pre-training and fine-tuning regimes. In partic-
ular, one notable difference between pre-training and fine-
tuning is that fine-tuned models appear to lie in a single low-
error region [44]. Indeed, linearly interpolating the weights

*Work done while MW and SG were at FAIR.
1University of Washington. 2Meta AI Research, FAIR Team.

0 5 10 15 20 25
Epochs

84.4

84.6

84.8

85.0

85.2

85.4

85.6

85.8

86.0

Im
ag

eN
et

 a
cc

ur
ac

y
lo-fi (individual node)
lo-fi
baseline

Figure 1. In standard multi-node distributed data-parallel fine-
tuning, there is synchronization between nodes at each step of fine-
tuning. With lo-fi (local fine-tuning), there is no communication
between nodes throughout fine-tuning. As a result, each node k
independently produces their own model θk. Then, lo-fi averages
these models once for the final solution θlo-fi = 1

n

∑n
k=1 θ

k. In
this four-node fine-tuning run, we show (i) the average accuracy
of the individual models θk, (ii) the accuracy of θlo-fi at the end of
each fine-tuning epoch, and (iii) the accuracy of the baseline which
communicates among nodes every step. In particular, we fine-tune
the ImageNet-21k pre-trained DeiT-base model from DeiT-III [59]
on ImageNet [11] using their code, which uses four nodes.

IN IN-V2 IN-R Sketch IN-A

baseline (DeiT-b) 85.96 76.65 62.66 46.86 57.15
lo-fi (DeiT-b) 86.00 76.84 63.25 48.37 58.43

baseline (DeiT-l) 87.12 78.18 69.87 54.41 68.97
lo-fi (DeiT-l) 87.10 78.25 70.14 54.95 69.53

Table 1. Comparing lo-fi (no communication during fine-tuning)
to the baseline which communicates at each step when fine-tuning
the ImageNet-21k pre-trained DeiT-base and DeiT-large model
from DeiT-III [59] on ImageNet [11]. Both lo-fi and the base-
line use the same number of iterations, which have been tuned for
the baseline. Underlined numbers indicate significantly better ac-
curacy according to McNemar’s test with significance level 0.05.
Lo-fi matches performance on ImageNet (IN), but can outperform
the baseline on some distribution shifts. The shifts we consider are
IN-V2 [54], IN-R [23], Sketch [60], and IN-A [24].

1

ar
X

iv
:2

21
0.

11
94

8v
2

 [
cs

.L
G

]
 1

2
N

ov
 2

02
2

of fine-tuned models can have similar advantages as ensem-
bling their predictions but without the added cost during in-
ference [65]. By contrast, linearly interpolating the weights
of two models trained from scratch will encounter a high
error barrier [18, 20].

Recently, the model soups approach [65] leveraged
this similarity between ensembling outputs and averaging
weights. Given a hyperparameter sweep over fine-tuned
models, they average the weights of multiple models in-
stead of the conventional procedure of selecting one model
and discarding the remainder. However, the model soups
approach does not modify the fine-tuning procedure itself.

In this paper, we leverage the observation that fine-
tuned models appear to lie in a single low error region to
remove communication between nodes during distributed
fine-tuning. In standard data-parallel multi-node fine-
tuning, gradients between nodes are communicated at each
step. This synchronization of updates keeps the models at
each node identical to each other during fine-tuning. How-
ever, in certain settings communication costs during fine-
tuning may be prohibitive, and we therefore ask whether
they are necessary at all. With our method of local fine-
tuning, which we refer to as lo-fi, we remove all commu-
nication between nodes during fine-tuning. The models
on each node therefore drift apart throughout fine-tuning.
Then, to arrive at the final solution at the end, we average
the weights of the models produced by each node.

We note that these techniques are a natural extension
of previous work: lo-fi is just a model soup [65] formed
by splitting up a large fine-tuning job into multiple smaller
jobs, each isolated to a node. Analogously, lo-fi is embar-
rassingly parallel training from branch-train-merge [37] ap-
plied in the setting where no domain specialization info is
provided and so each expert is trained on IID data. How-
ever, we believe that the application of these techniques in
this setting is of practical interest, especially if models con-
tinue to grow.

In computer vision we use the DeiT-III codebase [59]
to fine-tune the ImageNet-21k pre-trained DeiT-base and
DeiT-large models, which are four-node fine-tuning jobs by
default. We observe (Figure 1, Table 1) that lo-fi matches
the accuracy of DeiT-base and DeiT-large on ImageNet, the
task used for fine-tuning, while outperforming the baseline
on some distribution shifts. These improvements come af-
ter hyperparameter tuning the baseline to slightly exceed
that in the DeiT-III paper while requiring fewer fine-tuning
epochs. Moreover, lo-fi and the baseline observe the same
amount of data. While overall similar results are observed
when fine-tuning CLIP ViT-L [51] on ImageNet or tasks
from WILDS [31], lo-fi often requires more iterations in
this setting. Finally, we test lo-fi beyond computer vision
by fine-tuning OPT-125M and OPT-1.3B [72] on Common
Crawl, observing that lo-fi can match the baseline which

communicates between nodes.
Overall, our work is a test of whether communication

between nodes is required during fine-tuning. However, we
also wanted to understand the advantages of removing this
communication. Therefore, we benchmark the wall-clock
overhead of communication on an AWS cluster with EFA.
We use the models from the DeiT-III repository [59] in the
context of image classification. In this setting and on the
system used for this study, the advantages are overall less
substantial than we initially expected, especially for large
batch sizes. Notably, we observe that the trick of overlap-
ping the communication and computation in the backwards
pass [38], which is the default in PyTorch [48] as of v1.5,
reduces the overhead of using multiple nodes from roughly
50% slow-down to under 10% for the large DeiT model. Fi-
nally, we discuss how lo-fi can help with faster job schedul-
ing and addresses the straggler and jitter problem in dis-
tributed training, where different nodes might experience
random slowdowns.

2. Methods
This section details the methods used in our experi-

ments. We begin with the baseline of standard data-parallel
training, and next outline our straightforward modification
which i) removes communication between nodes then ii) av-
erages the final models produced by each node.

Consider a neural network f(x, θ) where x is the input
data and θ ∈ Rd are the network parameters. Since we are
fine-tuning, θ is initialized as the weights of a pre-trained
model. Moreover, as is standard in neural network training,
the input data x is a batch rather than a single data point.
Finally, let n denote the number of devices, b denote total
batch size, and `(ŷ, y) denote loss for the vector of predicted
labels ŷ = f(x, θ) and a vector of ground-truth labels y.

With communication. The most straightforward and
common approach for training with n devices is data-
parallel. In this setting, each device has their own copy of
the parameters θ. During fine-tuning, each batch x of size
b is split into n disjoint sub-batches of size b/n. Each de-
vice i loads the sub-batch (xi, yi) and computes gradients
gi = ∇θ`(f(xi, θ), yi). Then the gradients are synchro-
nized across nodes with each node computing an averaged
gradient ḡ = 1

n

∑n
i=1 gi. After synchronizing gradients,

each device uses ḡ to update θ. Since every device updates θ
using an identical gradient ḡ, the parameters θ remain iden-
tical across devices.

lo-fi. With local-finetuning (lo-fi), we partition the n de-
vices into K disjoint groups. In the majority of our exper-
iments, each group is a single node containing 8 GPU de-
vices. During fine-tuning we allow communication within

2

IN IN-V2 IN-R Sketch IN-A epochs drop prob no extra cost no comms

DeiT-base
paper [59] 85.72 76.53 61.83 47.44 57.29 50 0.15 X
baseline 85.96 76.65 62.66 46.86 57.15 24 0.15 X
lo-fi individual node 85.66 76.22 62.09 46.75 56.00 6 0.10 X X
lo-fi 86.00 76.84 63.25 48.37 58.43 24 0.10 X X
lo-fi ensemble 86.08 76.91 63.05 47.67 57.80 24 0.10 X

DeiT-large
paper [59] 86.97 78.47 69.70 54.35 68.57 50 0.40 X
baseline 87.12 78.18 69.87 54.41 68.97 12 0.30 X
lo-fi individual node 86.76 78.00 69.41 54.57 67.59 3 0.25 X X
lo-fi 87.10 78.25 70.14 54.95 69.53 12 0.25 X X
lo-fi ensemble 87.14 78.35 70.00 54.62 69.20 12 0.25 X

Table 2. Expanding the comparison between lo-fi and the baseline (Table 1) when fine-tuning the ImageNet-21k pre-trained models from
DeiT-III [59] on ImageNet [11]. In this four node fine-tuning run, lo-fi removes communication between nodes so that each node produces
an independent model. The weights of the models are then averaged at the end to produce the final solution. In this table we bold the
highest number and evaluate the following models: i) paper, the fine-tuned models from the DeiT-III paper [59], ii) baseline, which is our
improved fine-tuning baseline after hyperparameter turning which requires less epochs of training but achieves slightly higher accuracy
than reported in the DeiT-III paper [59], iii) lo-fi individual node, which is one of the individual node models that is produced by lo-
fi, iv) lo-fi, which fine-tunes individual models on each node then averages their weights once at the end, and v) lo-fi ensemble which
averages the outputs of the models produced by each node during lo-fi, and therefore requires more cost during inference. In addition
to evaluating on ImageNet (IN), the task used for fine-tuning, we also evaluate on the distribution shifts ImageNet-V2 (IN-V2, [54]),
ImageNet-R (IN-R, [23]), ImageNet-Sketch [60], and ImageNet-A (IN-A [24]). While more information is provided in Section 3.1, this
table also displays some hyperparameter changes we made from the default DeiT-III fine-tuning script. Unlike [59], we fine-tune with
LP-FT [34], and observe it is better for the baseline to use fewer fine-tuning epochs. Lo-fi observes the same amount of data as the tuned
baseline and uses the same hyperparameters with the exception of slightly decreased regularization by lowering stochastic depth [25] drop
probability by 0.05 (making the same change to the baseline decreased accuracy). Additional columns track whether the model incurs no
additional cost during inference compared to a single model (denoted no extra cost), and also if there is no communication between nodes
during fine-tuning (denoted no comms). Overall, lo-fi matches or outperforms the baseline without communication between nodes during
fine-tuning.

each group, but not across groups. Each group k begins
with parameters θk which are initially identical across de-
vices, but drift apart throughout fine-tuning. Then, at the
end of fine-tuning there is a single communication and the
parameters from each group are averaged to produce a final
solution θ = 1

K

∑K
k=1 θ

k.
There are two possible implementations for lo-fi which

we refer to as implementation A and B. Implementation
A proceeds as before—each device i loads the sub-batch
(xi, yi) and computes gradients gi. There is then gradient
synchronization only among devices belonging to the same
group while devices from different groups apply different
gradients. Data partitioning is accomplished without com-
munication by coordinating random seeds, so long as each
device knows its rank and the total number of devices. Our
experiments primarily use Implementation A.

In Implementation B, each group is a completely inde-
pendent run—no knowledge of total number of devices is
required. Accordingly, within each group the global batch
size is scaled by 1/K so that the per-device batch size is
matched. Our image classification results use Implementa-

tion A while our language modelling results use Implemen-
tation B.

Our motivation for having one group per node and still
allowing communication among the devices on the node is
that communication within a node is faster than communi-
cation across nodes.

3. Experiments

This section presents our experiments which test whether
communication is required during fine-tuning. First we
use the DeiT-III codebase [59] to fine-tune their pre-
trained ImageNet-21k models on ImageNet, where we ob-
serve that lo-fi matches the baseline but without commu-
nication between nodes (Section 3.1). Next, we fine-
tune CLIP [51] on ImageNet, WILDS-FMoW [10, 31] and
WILDS-iWildCam [3] (Section 3.2). Finally, we show pre-
liminary experiments applying lo-fi outside of computer vi-
sion (Section 3.3) and benchmark the associated speed-ups
by removing communication (Section 3.4).

3

3.1. Fine-tuning DeiT-III on ImageNet

The aim of these experiments is to test whether commu-
nication between nodes is required when fine-tuning high
accuracy models for image classification. To test this we
begin by fine-tuning the DeiT-base and DeiT-large models
from the DeiT-III paper [59] using their code. In particu-
lar, we fine-tune their ImageNet-21k models on ImageNet-
1k [11] with and without lo-fi.

We chose the models from DeiT-III for a few rea-
sons: (i) DeiT-III is representative of state-of-the-art set-
tings as it uses many advanced techniques such as stochas-
tic depth [25], CutMix [71], and the LAMB optimizer [69].
(ii) DeiT-III provides hyperparameter configurations which
they used in their fine-tuning experiments. (iii) DeiT-III
uses 4 nodes with 8 GPUs each when fine-tuning their pre-
trained ImageNet-21k models on ImageNet. This provides
an opportunity to test lo-fi in an equivalent setting where
there is normally communication between nodes.

Main results. Our overall finding is that communica-
tion between nodes is not necessary in this setting—lo-fi
matches the accuracy of the baseline while observing the
same amount of data. These results are presented in Fig-
ure 1 and Tables 1 and 2. In these experiments, lo-fi uses 4
groups—each group corresponds to one node.

Figure 1 illustrates accuracy throughout training when
fine-tuning DeiT-base with and without lo-fi. We also re-
port the average accuracy of the models produced by the
individual nodes. To make this plot we display the accuracy
of the averaged lo-fi model at the end of each epoch, though
usually we would only average the models once at the end.
A question emerges when looking at this plot: why does the
accuracy of the individual node first dip before coming back
up? The answer is due to the interaction of learning rate and
batch size, which we discuss further in Appendix B.

Table 1 evaluates the final models from Figure 1 on Im-
ageNet as well as under distribution shift (on ImageNet-
V2 [54], ImageNet-R [23], ImageNet Sketch [60], and
ImageNet-A [24]). In addition, Table 1 repeats the exper-
iment from Figure 1 with the DeiT-large model. We un-
derline any result that is significantly better (using McNe-
mar’s test with significance 0.05). Overall we observe that
lo-fi matches the accuracy of the baseline which uses com-
munication, and outperforms the baseline under distribution
shift.

Table 2 supplements Table 1 with additional details. In
particular, we consider the accuracy of the model produced
by an individual node during lo-fi, before the averaging. We
also evaluate the output-space ensemble of the models pro-
duced by each node during lo-fi, which is more expensive
during inference as a pass through each model is required.
Finally, we display the accuracy of the models fine-tuned

in the DeiT-III paper [59]. We improved our own base-
line over that in the paper with the following hyperparemter
changes: (i) Instead of removing the classification layer
of the pre-trained model, we implement a version of LP-
FT [34] to fine-tune—we preserved the ImageNet-21k clas-
sifier then use a class mapping from ImageNet-21k to Im-
ageNet classes. (ii) We remove the grayscale, solarization,
and Gaussian blur augmentations, since we found this im-
proves accuracy. This aligns with previous research where
fine-tuning requires less augmentation [65]. (iii) We fine-
tuned for fewer epochs, which also required a switch to a co-
sine scheduler that updates every iteration instead of every
epoch so the schedule could complete. We also considered
different values for the learning rate and stochastic depth,
but found the default values to be best [59]. This is with
the exception of DeiT-large for which we found stochastic
depth 0.3 to be better for the baseline, which is what we
used.

Lo-fi was run using identical hyperparameters except we
decreased the stochastic depth drop rate by 0.05 for both
DeiT-base and DeiT-large since each node is effectively
fine-tuning on less data and may therefore require less reg-
ularization. The most substantive change from the DeiT-
III code was to use LP-FT [34], which we accomplished
by preserving the classification layer from the pre-trained
model and using a mapping from ImageNet-21k to Ima-
geNet1. While this change results in a minor improvement
for the baseline, we found it was necessary for achieving
matching performance with lo-fi. Overall, despite the exten-
sive hyperparameter tuning we performed for the baseline,
lo-fi was still able to match or exceed the accuracy.

Ablations. We ran three ablation studies to better un-
derstand the performance of lo-fi in this setting. First,
we wanted to test whether adding more nodes was help-
ful. In the initial 4 node experiment with lo-fi, we
matched the baseline in terms of total amount of data
observed, allowing a fair compute-matched comparison.
However, there are practical settings such as privacy-
preserving ML in which this the benefits of reduced com-
munication may outweigh the importance of matched com-
pute. In Figure 2 we observed that adding more nodes did
not improve in-distribution accuracy. Interestingly, how-
ever, adding additional nodes marginally improved out-
of-distribution performance, most notably on ImageNet-
Sketch and ImageNet-A.

Next, we wanted to understand if four groups, one per
node, was optimal in this setting. What happens if we in-
stead use 8 groups—2 per node, or 2 groups—each group
consisting of 2 nodes? In this experiments the amount
of data observed remains constant; all that changes is the

1The only class in ImageNet but not ImageNet-21k is teddy bear—we
initialize this row with bear instead.

4

5 10 15
Number of nodes

85.8

86.0

Ac
cu

ra
cy

ImageNet

5 10 15
Number of nodes

76.5

77.0
ImageNet-V2

5 10 15
Number of nodes

62.5

63.0

ImageNet-R

5 10 15
Number of nodes

47

48

ImageNet-Sketch

5 10 15
Number of nodes

56

58

ImageNet-A

Figure 2. We test whether the performance of lo-fi continues to improve when adding more nodes. On the contrary, this experiment
suggests diminishing or even negative returns after 4 nodes. This experiment is for fine-tuning DeiT-base as in Table 1. Recall that when
using four nodes, lo-fi and the baseline observe the same number of images, but lo-fi does not require communication between nodes.
When moving beyond 4 nodes as we do in this experiment, lo-fi observes more images then the baseline.

0.999

0.9999
0.99999

β = 0.99

Figure 3. For the experiment in Table 1, lo-fi outperforms the base-
line under distribution shift. We wanted to test whether this OOD
performance (y-axis) could be improved by applying weight av-
eraging techniques to the baseline. We observe that the answer
is yes with EMA [58], although this can come at slight cost in-
distribution accuracy (x-axis). In this plot we try 4 different val-
ues of EMA decay β. Applying EMA to lo-fi had minimal benefit,
as did applying WiSE-FT [66] to the baseline. The ImageNet-
21k→ImageNet transfer setting is not characteristic of those stud-
ied in the WiSE-FT paper.

amount of communication. As presented in Table 3, accu-
racy drops slightly when using a larger number of groups2.
This result demonstrates that the best configuration is one
group per node.

Finally, we found it interesting the lo-fi outperformed the
baseline under distribution shift. Accordingly, we wanted
to test whether we could recover these out-of-distribution
(OOD) improvements by applying other weight averaging
techniques to the baseline. We observe in Figure 3 that
the answer is yes, although at slight cost to in-distribution
performance for the methods we tried. The best perform-
ing technique we tried was a debiased exponential moving

2When using 2, 8, and 16 groups we changed the stochastic depth drop
rate by 0.05, -0.05, and -0.10, respectively, from the four group setting.

Groups 2 4 8 16

ImageNet Accuracy 85.95 86.00 85.85 85.73

Table 3. For our four-node fine-tuning jobs, we usually partition
the 32 GPUs into 4 communication groups, one per-node. This
table shows the effect of partitioning the GPUs into groups of dif-
ferent sizes, finding slightly worse performance when the number
of groups is large.

average (EMA) [30, 58], for which we tried decay values
0.99, 0.999, 0.9999, and 0.99999. We also tried applying
EMA and WiSE-FT [66] to lo-fi, but did not observe out-
of-distribution improvements 3.

3.2. Fine-tuning CLIP ViT-L on ImageNet and
WILDS

In the previous section we observed that lo-fi matches
the baseline for DeiT-III on ImageNet, but how does lo-fi
perform for models pre-trained on larger datasets? In this
section, we further test lo-fi for the CLIP ViT-L [13, 51]
when fine-tuning on ImageNet (Figure 4) as well as two
datasets from WILDS [31] (Figure 5).

Unlike the DeiT models, CLIP was not pre-trained with
stochastic depth and we find better accuracy when we fine-
tune without stochastic depth. This is unlike the DeiT-III
models, which we found performed best when we used
some stochastic depth. Indeed, this allowed us to use
slightly less regularization for lo-fi then we did for the base-
line by decreasing stochastic depth drop rate by 0.05. As
this is no longer the case, we instead show experiments
when fine-tuning for different numbers of epochs. Other
than this omission of stochastic depth and varying the train-
ing epochs, the hyperparameter configuration is identical
to that discussed in the previous section and follows the
ImageNet-21k→ImageNet fine-tuning set-up from DeiT-

3The intuition from WiSE-FT [66] is that of combining a generalist
and specialist. Our intuition for why WiSE-FT does not show substantial
improvements in the ImageNet-21k→ImageNet transfer setting is because
both models are ImageNet specialists.

5

6 12 24
Fine-tuning epochs

86.5

87.0

87.5

Ac
cu

ra
cy

ImageNet

6 12 24
Fine-tuning epochs

78

79

ImageNet-V2

6 12 24
Fine-tuning epochs

80

85

ImageNet-R

6 12 24
Fine-tuning epochs

60

62

ImageNet-Sketch

6 12 24
Fine-tuning epochs

67.5

70.0

72.5

ImageNet-A

lo-fi baseline

Figure 4. We fine-tune CLIP ViT-L [13,51] on ImageNet. In contrast to the DeiT fine-tuning experiments, the models were not pre-trained
with stochastic depth and we found better accuracy when fine-tuning without stochastic depth. Instead, we fine-tune for 6, 12, and 24
epochs. lo-fi shows good performance under distribution shift, but on ImageNet requires more epochs to exceed the baseline accuracy
unlike in the DeiT experiments.

6 12 24 48
Fine-tuning epochs

67.5

70.0

72.5

Ac
cu

ra
cy

WILDS-FMoW: ID

6 12 24 48
Fine-tuning epochs

62

64

66

WILDS-FMoW: OOD

3 6 12 24
Fine-tuning epochs

77

78

79
WILDS-iWildCam: ID

3 6 12 24
Fine-tuning epochs

78.00

78.25

78.50
WILDS-iWildCam: OOD

lo-fi baseline

Figure 5. We repeat the CLIP ViT-L fine-tuning experiment from Figure 4 one two other image classification tasks: WILDS-FMoW [10,31],
a satelite recognition task with a geographic and temporal distribution shift and WILDS-iWildCam [3, 31], a camera trap dataset with a
geographic distribution shift. Overall, we find similar results as in Figure 4.

III [59].
Results when fine-tuning CLIP ViT-L on ImageNet are

presented in Figure 4. For this experiment, we initialize the
classification head of the zero-shot model using the zero-
shot classifier output by the CLIP text tower (as in [66]).
We observe that more fine-tuning epochs are required for
lo-fi to outperform the baseline on ImageNet. Under distri-
bution shift, lo-fi roughly matches or exceeds the baseline
for each of the fine-tuning epochs we tried. While this result
indicates that lo-fi is a promising alternative to the baseline
in this setting, a key limitation is that additional fine-tuning
epochs were required to enable this improvement. The ac-
curacy improvements beyond the best baseline model are
consistent with the results reported in model soups [65].

We also test CLIP ViT-L on two further datasets,
WILDS-FMoW [10, 31], a satellite image recognition
dataset with a temporal distribution shift and WILDS-
iWildCam [3, 31], a classification dataset with camera traps
in the wild with a geographic distribution shift. Our mo-
tivation is to test lo-fi on natural images beyond the Ima-
geNet universe. The results are presented in Figure 5, ob-

serving very similar results to the aforementioned experi-
ment of fine-tuning CLIP ViT-L on ImageNet. However,
there is an important difference in the experimental set-up.
For these experiments, we first tried using the zero-shot ini-
tialization for the last layer of the model, as we did with
ImageNet. However, this resulted in worse accuracy for lo-
fi. Accordingly, these experiments are completed using the
LP-FT method of fine-tuning [34]. First, we train a linear
probe using one node. This linear probe is then used as the
initialization when end-to-end fine-tuning individually on
each node. We also apply this change to the baseline, but
the benefit is much less substantial for the baseline than for
lo-fi. Finally, for this experiment we used learning rate 7e-4
which we found resulted in higher accuracy for lo-fi and the
baseline.

3.3. Language model fine-tuning

We also test lo-fi outside of image classification by fine-
tuning OPT-125M and OPT-1.3B [72].

6

0 500 1000 1500 2000 2500 3000
Iterations

22.5

23.0

23.5

24.0

24.5

25.0

25.5

26.0

Pe
rp

le
xi

ty
 (C

om
m

on
 C

ra
wl

)
OPT 125M

lo-fi (individual node)
lo-fi
baseline

0 200 400 600 800 1000 1200 1400
Iterations

15.0

15.2

15.4

15.6

15.8

16.0

Pe
rp

le
xi

ty
 (C

om
m

on
 C

ra
wl

)

OPT 1.3B

lo-fi (individual node)
lo-fi
baseline

Figure 6. Fine-tuning a language model (left: OPT-125M, right: OPT-1.3B) on Common Crawl with lo-fi closely approaches the perfor-
mance of the baseline of multi-node fine-tuning with communication. Here, we train four lo-fi workers independently, one per node. The
baseline consists of standard data-parallel fine-tuning using four nodes, where there is communication between nodes at every iteration.
The x-axis shows iterations, which does not take into account that lo-fi may be faster.

Experimental Setup We report i) lo-fi (individual node),
which is the average performance of the models produced
by each node when using lo-fi, ii) lo-fi, which averages
models produced by each node, and iii) baseline, which uses
communication between nodes. For the 125M parameter
model, we set the learning rate to 6e-5, with 1024-length
sequence blocks, and 500K tokens per batch. For the 1.3B
parameter model, we set the learning rate to 1e-5, with 512-
length sequence blocks, and 1M tokens per batch. We use
fp16 mixed precision [42] for all experiments. We fine-tune
the 125M parameter model with 4 nodes, and we fine-tune
the 1.3B parameter model with 8 nodes. When using lo-fi
there is no communication between nodes, so the experi-
ments produce 4 and 8 models, respectively. Each node
consists of 8 Volta 32GB GPUs connected with 400GBps
interconnect.

Results We fine-tune on the Pile’s Common Crawl sub-
set [19] using the Huggingface Transformers library [63].
Results are presented in Figure 6. We observe that for both
model scales, when comparing by step count, lo-fi roughly
matches the performance of the baseline, providing large
performance improvements over the individual node set-
ting. These results suggest that lo-fi is an effective alter-
native to standard multi-node fine-tuning with communica-
tion.

3.4. How much is the speed-up, really?

We have shown that lo-fi produces high accuracy models
without communication during fine-tuning. This leads to an
important practical question: what is the wall-clock advan-
tage of eliminating communication between nodes during
fine-tuning? We examine the wall-clock training time ad-
vantage once nodes are allocated and also the time it takes

for node allocation on a slurm cluster. Note that these ex-
periments are for the DeiT-III [59] models in the image clas-
sification setting.

Wall-clock advantage. To examine the wall-clock advan-
tage of lo-fi compared to the baseline we use A100 GPUs
on AWS with fast interconnect of 400 GBps (EFA). This is
representative of a fast and modern large scale neural net-
work training set-up. In particular, we want to understand
the effect of using modern distributed training tools, and
also varying batch size. We note that our results depend
critically on the quality of the interconnect between nodes.
In a setting with a slower interconnect such as standard eth-
ernet, we would expect the training speed-ups to be more
substantial. In a setting with a faster interconnect such as
TPUs, the training speed-ups should be more minor.

A recent innovation in distributed training tooling is
to overlap the backwards pass computation and gradient
communication—the gradients for layer ` − 1 can be com-
puted at the same time as communicating the gradients for
layer ` [38, 48] 4. We experiment with turning on and off
this overlapping communication/computation feature, find-
ing substantial reductions in communication overhead when
overlapping communication and computation. We also ex-
periment with changing the batch size. In general, we ob-
served that when using a smaller batch size, communication
will account for a larger portion of training time. This is be-
cause the size of the gradient does not depend on the batch
size, so absolute communication cost does not depend on
batch size. However, using a smaller batch size will lower
the total computation time and therefore communication

4Overlapping communication/computation on by default in PyTorch
≥1.5 [38, 48].

7

cost will account for a larger fraction of the total training
time.

Our experiments with varying batch size and turning on
and off overlapping communication/computation are pre-
sented in Figure 7. These experiments are for the vision
transformer models DeiT-base, DeiT-large, DeiT-huge and
DeiT-giant, ranging from roughly 108 to 109 parameters.
On the x-axis we show the different model sizes, while the
y-axis shows the additional wall-clock time required to go
from a 1 node to 4 node job (i.e., 0% indicates that the 4
node job is the same speed as the 1 node job, while 100%
indicates that the 4 node job is twice as slow). In this ex-
periment, the number of iterations and batch size per de-
vice is fixed5. We found that without overlapping commu-
nication/compute, shifting to a multi-node settings results
in a substantial increase in training time of 25-55% (purple
lines). However, overlapping communication and compute
has proven surprisingly effective, reducing the communica-
tion cost to <10%.

A potential issue with these experiments is that they cur-
rently reflects a “state-of-the-art” cluster setting, and ac-
tual workflows may be slower. We also believe that both
GPU memory size and network bandwidth will improve in
the future. Higher GPU memory capacity will allow users
to train larger models, resulting in higher communication
overhead, while higher network bandwidth will help to re-
duce the communication delay.

Finally, we note that lo-fi can help the straggler and jitter
problem in distributed training, where different nodes might
experience random slowdowns due to various reasons. In
standard data-parallel, synchronization will take place mul-
tiple times per iteration, such that any random slowdown
on any node will slow down the entire run. Since lo-fi
needs only one communication at the end (which can even
be asynchronous), the straggler/jitter problem is no longer
an issue.

Scheduling advantage. For modern cluster workloads,
both on private and public clusters, the wait time to sched-
ule a job can increase the total training time, especially dur-
ing periods of heavy cluster usage. Since single-node jobs
require fewer simultaneous resources to run, they should
schedule faster, reducing the total training time. To mea-
sure this, we analyzed the time required to schedule a 1-
node job vs. a multi-node job on a large slurm-based clus-
ter and present the results in Figure 8. These wait times are
averaged over all jobs run on this cluster over a three month
period. We found that scheduling a single node job was no-
tably faster than multi-node jobs, taking ∼45 minutes for 1
node, ∼2 hours for 2-4 nodes, and ∼3 hours for 8 nodes.

5We note that scaling with fixed batch size may be unrealistic for cer-
tain problems as large batch sizes can cause accuracy to drop, which would
be a reason to use lo-fi.

base
(1e8 params)

large huge giant
(1e9 params)

Model size

0

10

20

30

40

50

60

Co
m

m
un

ica
tio

n
ov

er
he

ad
:

ad
de

d
tim

e
du

e
to

 m
ul

ti-
no

de
 (%

)

Non overlapping communication/compute (batch size 16)
Non overlapping communication/compute (batch size 32)
Overlapping communication/compute (batch size 16)
Overlapping communication/compute (batch size 32)

Figure 7. On an AWS cluster we show on the y-axis the wall-clock
overhead observed when switching from 1 to 4 nodes using models
from the DeiT-III repository [59] and constant per-GPU batch size.
100% indicates that the job becomes twice as slow while 0% indi-
cates no difference switching from 1 to 4 nodes. With the method
of overlapping the communication and computation in the back-
ward pass [38], the slow-down is less substantial than we initially
expected, especially for larger per-GPU batch sizes. The huge and
giant models are deeper and there is more opportunity to overlap
communication and computation.

1 2 4 8
Number of nodes

1.0

1.5

2.0

2.5

3.0

W
ai

t t
im

e
fo

r j
ob

 a
llo

ca
tio

n
(h

ou
rs

)

Figure 8. Jobs requiring only one node schedule faster than jobs
requiring four nodes on the slurm cluster that we use for these ex-
periments. This plot shows the median per-day wait time averaged
over three months of job data on this cluster.

We note that these results are specific to the cluster used
in these experiments and may or may not be representative
of other clusters depending on their scheduling algorithm
and workload distribution, amongst other factors. We also
note that the scheduling benefit will only apply when us-

8

ing implementation B in which each group is trained in-
dependently (as described in Section 2). Regardless, we
thought that it may be useful to collect and present this em-
pirical data, providing quantitative support for the obser-
vation from [37] that jobs requiring fewer nodes schedule
faster.

3.5. Does jointly training to increase diversity across
groups improve lo-fi performance?

Previous work from [22, 65] has shown that more di-
verse models trained with different hyperparameters pro-
duce larger benefits when ensembles or weight averaged
and also [37] which showed that ensembling or weight av-
eraging specialists trained on different domains incurs the
largest benefit. We therefore asked whether encouraging di-
versity automatically through regularization during training
might improve the performance of the final lo-fi model.

While this strategy did indeed produce models with
a larger averaging benefit (avg. model - best individual
model), it also decreased the accuracy of the individual
models such that overall performance was the same or
worse than simply training the lo-fi components indepen-
dently. We also tried pulling together the predictions of
the models, which is also known as co-distillation [2, 56].
This improved the accuracy of the individual models, but
as model diversity decreased, the benefit from weight-
averaging was reduced, also leading to overall lower ac-
curacy. We explored a number of variations of these ap-
proaches which we discuss in more detail in Appendix A.

4. Related work

Averaging and linearly interpolating models. Averag-
ing or interpolating the weights of neural networks is a com-
mon technique for improving accuracy.

Weight-averaging techniques for optimization date back
to early work in convex optimization [50,55]. In deep learn-
ing, an exponential moving average (EMA) of weights can
be used to improve accuracy [58]. Another popular ap-
proach is Stochastic Weight Averaging (SWA) [28] which
uses a uniform average of weights saved at each epoch while
training with a constant or cyclic learning rate. Indeed,
the SWA method was motivated by the analogy between
weight-averaging and ensembling.

While SWA and EMA average weights along the training
trajectory, there has also been substantial interest in averag-
ing weights across independent trajectories. In particular,
Nagarajan & Kolter [43] observe that the weights of two
models that are fine-tuned independently on MNIST [35]
from a shared initialization can be interpolated without in-
creasing loss. For more difficult problems such as Ima-
geNet, this naive linear interpolation encounters a high er-
ror barrier [17, 18]. However, Frankle, Dziugaite et al. [18]

observe that when the first part of the optimization trajec-
tory is shared and the remainder of training is indepen-
dent, models can once again be interpolated without reduc-
ing accuracy. They refer to this phenomena—interpolating
weights without accuracy loss—as linear mode connectiv-
ity. Neyshabur, Sedghi & Zhang [44] observed a similar
phenomenon when interpolating between model pairs that
are fine-tuned from a shared initialization on a new task.
This observation was extended to interpolation between a
zero-shot model and fine-tuned model with the WiSE-FT
approach [66], to many models fine-tuned with different hy-
perparameters with model soups [65], to models fine-tuned
on different datasets with Ilharco et al. [27], and for creat-
ing better pre-trained models by Choshen et al. [8]. While
all of the aforementioned approaches employ simple linear
interpolation, more advanced weight-averaging techniques
have also been developed with promising results [40].

Recently, Li, Gururangan et al. [37] introduced branch-
train-merge which is at the intersection of model combina-
tion and distributed training. They consider the case where
the training data is partitioned into different textual do-
mains, then train an individual expert model for each do-
main. As they are training from scratch, they first require an
initial seed phase. They then combine all of these experts
via weight averaging or ensembling to outperform the dense
baseline of training one large model on all of the data. The
main difference are that our work is for fine-tuning, and we
do not assume the data is partitioned into different domains.

Other research in the area includes Garipov et al. [20]
and Draxler et al. [14] who concurrently found that two
neural network solutions trained independently can be con-
nected by a simple curve along which loss remains low.
These findings were generalized by Benton et al. [4] who
learn high dimensional low-loss connectors between indi-
vidual solutions. Concurrent work with Benton et al., [64]
learned these high dimensional low-loss subspaces from
scratch. Then, Entezari et al. [15] conjectured that all solu-
tions could be made to be linearly connected by applying a
permutation to the weights which does not change the func-
tion. Ainsworth et al. [1] recently made progress towards
confirming this conjecture. However, unlike the model in-
terpolations we observe here, and have previously been ob-
served [37, 65], the interpolations in Ainsworth et al. [1] so
far do not improve models in terms of accuracy. Regard-
less, they are interesting from a scientific perspective, and
suggest the possibility of applying methods such as lo-fi for
training from scratch in the future, although there is cur-
rently no evidence towards this.

Distributed training and fine-tuning. Distributed train-
ing [38, 70] and fine-tuning [5, 61] are increasingly impor-
tant in deep learning as models become larger.

An overview of the many standard approaches is detailed

9

by Weng & Brockman [62], including i) data-parallelism,
where data is split among devices, ii) pipeline parallelism,
where different layers are split among devices, and iii) ten-
sor parallelism, where individual layers are split among de-
vices. We note that these approaches are not mutually ex-
clusive. Indeed, one can use pipeline parallelism to dis-
tribute a model across a node, then use data-parallelism
across nodes. lo-fi is proposing an alternative to data-
parallelism across nodes—instead of synchronizing the up-
dates between nodes during fine-tuning, each node inde-
pendently produces a model which is averaged at the end
of fine-tuning. We emphasize that lo-fi can still be used if
there is pipeline parallelism across the node.

There have previously been many alternatives proposed
to synchronizing gradients each step. The idea of train-
ing several models in parallel and averaging their weights
once at the end of training has been investigated at least
since [41,73]. The focus in those works is on convex models
and training from scratch, rather than fine-tuning. Another
alternative, HogWild [53] proposes asynchronous commu-
nication. The difference between HogWild and lo-fi is that
lo-fi never communicates during fine-tuning, so it’s as if the
hogs each have their own individual farm. As another al-
ternative, local-sgd [46, 57] communicates updates every k
steps instead of every step. lo-fi is equivalent to local-sgd
applied to fine-tuning where k is the number of fine-tuning
epochs.

There have also been compelling recent methods for
more efficient and accessible pipeline or tensor parallelism
to enable learning or inference with extremely large mod-
els. For instance, with Petals [5] certain layers of very
large models are computed and communicated among coor-
dinated users. Also, researchers have been using decentral-
ized training for very large models [26, 70] which is made
possible by, e.g., compressing communication [16, 29, 39,
61, 67]. Indeed, even inference with very many-billion pa-
rameter models can pose interesting challenges [12]. Our
approach is orthogonal to the work in compressing commu-
nication, as we are instead removing communication, but
may prove useful for large-scale decentralized training.

There is also the active research area of federated learn-
ing (e.g., [29, 49]), which has recently been explored in
transfer settings [45]. In federated learning, the data on
each client is different and updates are usually communi-
cated every k steps. While lo-fi only considers the easier
setting of IID data, it is possible that similar approaches
based on weight averaging to reduce communication may
prove beneficial for privacy-preserving machine learning.

5. Limitations
There are many limitations discussed throughout this

text. For instance, we found that when fine-tuning CLIP
ViT-L on ImageNet and WILDS, lo-fi needs to observe

more data to exceed the baseline. This is similarly true dur-
ing language model fine-tuning (Section 3.3). Therefore,
we most recommend lo-fi when communication costs are
prohibitive. A final limitation is that lo-fi can only achieve
matching accuracy when no new parameters are introduced,
which we accomplish with a “zero-shot” initialization, or
via LP-FT (this does not come up during language model
fine-tuning).

6. Conclusion

Overall we have observed that communication between
nodes is not required during fine-tuning in certain settings.
These findings may prove beneficial to a number of settings
including large-scale decentralized fine-tuning and privacy-
preserving ML and represent a promising step in the over-
all direction of developing models like open-source soft-
ware [52] in which many institutions can collaboratively
fine-tune a large model if none has the resource to do so
individually. As more workloads shift to fine-tuning of pre-
trained models and models grow increasingly larger, we
hope that our results will help to reduce barriers to large-
scale models.

Acknowledgements

We thank Beidi Chen, Surya Ganguli, Caleb Ho, Gabriel
Ilharco, Teng Li, Mansheej Paul, Alex G, Andrew Saxe,
David Schwab, Shubho Sengupta, and Hugo Touvron for
useful discussions.

References
[1] Samuel K Ainsworth, Jonathan Hayase, and Siddhartha

Srinivasa. Git re-basin: Merging models modulo permuta-
tion symmetries. arXiv preprint arXiv:2209.04836, 2022. 9

[2] Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Or-
mandi, George E Dahl, and Geoffrey E Hinton. Large scale
distributed neural network training through online distilla-
tion. arXiv preprint arXiv:1804.03235, 2018. 9, 14

[3] Sara Beery, Arushi Agarwal, Elijah Cole, and Vighnesh
Birodkar. The iwildcam 2021 competition dataset. In Con-
ference on Computer Vision and Pattern Recognition (CVPR)
FGVC8 Workshop, 2021. https://arxiv.org/abs/
2105.03494. 3, 6

[4] Gregory Benton, Wesley Maddox, Sanae Lotfi, and Andrew
Gordon Gordon Wilson. Loss surface simplexes for mode
connecting volumes and fast ensembling. In International
Conference on Machine Learning, pages 769–779. PMLR,
2021. 9

[5] Alexander Borzunov, Dmitry Baranchuk, Tim Dettmers,
Max Ryabinin, Younes Belkada, Artem Chumachenko,
Pavel Samygin, and Colin Raffel. Petals: Collaborative
inference and fine-tuning of large models. arXiv preprint
arXiv:2209.01188, 2022. 9, 10

10

https://arxiv.org/abs/2105.03494
https://arxiv.org/abs/2105.03494

[6] Benjamin Brazowski and Elad Schneidman. Collective
learning by ensembles of altruistic diversifying neural net-
works. arXiv preprint arXiv:2006.11671, 2020. 14

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, et al. Language models
are few-shot learners. In Advances in Neural Information
Processing Systems (NeurIPS), 2020. https://arxiv.
org/abs/2005.14165. 1

[8] Leshem Choshen, Elad Venezian, Noam Slonim, and Yoav
Katz. Fusing finetuned models for better pretraining. arXiv
preprint arXiv:2204.03044, 2022. 9

[9] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian
Gehrmann, et al. Palm: Scaling language modeling with
pathways, 2022. https://arxiv.org/abs/2204.
02311. 1

[10] Gordon Christie, Neil Fendley, James Wilson, and Ryan
Mukherjee. Functional map of the world. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.
https://arxiv.org/abs/1711.07846. 3, 6

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical im-
age database. In Conference on Computer Vision and Pat-
tern Recognition, 2009. https://ieeexplore.ieee.
org/document/5206848. 1, 3, 4

[12] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. Llm. int8 (): 8-bit matrix multiplication for
transformers at scale, 2022. https://arxiv.org/
abs/2208.07339. 10

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-
tions (ICLR), 2021. https://arxiv.org/abs/2010.
11929. 5, 6

[14] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and
Fred Hamprecht. Essentially no barriers in neural network
energy landscape. In International conference on machine
learning, pages 1309–1318. PMLR, 2018. 9

[15] Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam
Neyshabur. The role of permutation invariance in lin-
ear mode connectivity of neural networks. arXiv preprint
arXiv:2110.06296, 2021. 9

[16] Fartash Faghri, Iman Tabrizian, Ilia Markov, Dan Alistarh,
Daniel M Roy, and Ali Ramezani-Kebrya. Adaptive gradi-
ent quantization for data-parallel sgd. Advances in neural
information processing systems, 33:3174–3185, 2020. 10

[17] Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul,
Sepideh Kharaghani, Daniel M Roy, and Surya Ganguli.
Deep learning versus kernel learning: an empirical study of
loss landscape geometry and the time evolution of the neural
tangent kernel. In Advances in Neural Information Process-

ing Systems (NeurIPS), 2020. https://arxiv.org/
abs/2010.15110. 9

[18] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy,
and Michael Carbin. Linear mode connectivity and the lot-
tery ticket hypothesis. In International Conference on Ma-
chine Learning (ICML), 2020. https://arxiv.org/
abs/1912.05671. 2, 9

[19] Leo Gao, Stella Biderman, Sid Black, Laurence Golding,
Travis Hoppe, Charles Foster, Jason Phang, Horace He,
Anish Thite, Noa Nabeshima, Shawn Presser, and Connor
Leahy. The pile: An 800gb dataset of diverse text for lan-
guage modeling, 2021. 7

[20] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry
Vetrov, and Andrew Gordon Wilson. Loss surfaces, mode
connectivity, and fast ensembling of dnns. In Advances
in Neural Information Processing Systems (NeurIPS), 2018.
https://arxiv.org/abs/1802.10026. 2, 9

[21] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jiten-
dra Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. In Conference on
computer vision and pattern recognition (CVPR), 2014.
https://openaccess.thecvf.com/content_
cvpr_2014/papers/Girshick_Rich_Feature_
Hierarchies_2014_CVPR_paper.pdf. 1

[22] Raphael Gontijo-Lopes, Yann Dauphin, and Ekin D Cubuk.
No one representation to rule them all: Overlapping features
of training methods. arXiv preprint arXiv:2110.12899, 2021.
9, 14

[23] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Ka-
davath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler
Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Stein-
hardt, and Justin Gilmer. The many faces of robustness:
A critical analysis of out-of-distribution generalization. In-
ternational Conference on Computer Vision (ICCV), 2021.
https://arxiv.org/abs/2006.16241. 1, 3, 4

[24] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Stein-
hardt, and Dawn Song. Natural adversarial examples.
Conference on Computer Vision and Pattern Recognition
(CVPR), 2021. https://arxiv.org/abs/1907.
07174. 1, 3, 4

[25] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil-
ian Q Weinberger. Deep networks with stochastic depth. In
European conference on computer vision, pages 646–661.
Springer, 2016. 3, 4

[26] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat,
Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam,
Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of
giant neural networks using pipeline parallelism. Advances
in neural information processing systems, 32, 2019. 10

[27] Gabriel Ilharco∗, Mitchell Wortsman∗, Samir Yitzhak
Gadre∗, Shuran Song, Hannaneh Hajishirzi, Simon Korn-
blith, Ali Farhadi, and Ludwig Schmidt. Patching open-
vocabulary models by interpolating weights, 2022. https:
//arxiv.org/abs/2208.05592. 9

[28] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry
Vetrov, and Andrew Gordon Wilson. Averaging weights
leads to wider optima and better generalization. In Confer-

11

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/1711.07846
https://ieeexplore.ieee.org/document/5206848
https://ieeexplore.ieee.org/document/5206848
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.15110
https://arxiv.org/abs/2010.15110
https://arxiv.org/abs/1912.05671
https://arxiv.org/abs/1912.05671
https://arxiv.org/abs/1802.10026
https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf
https://arxiv.org/abs/2006.16241
https://arxiv.org/abs/1907.07174
https://arxiv.org/abs/1907.07174
https://arxiv.org/abs/2208.05592
https://arxiv.org/abs/2208.05592

ence on Uncertainty in Artificial Intelligence (UAI), 2018.
https://arxiv.org/abs/1803.05407. 9

[29] Peter Kairouz, H Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista
Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-
mings, et al. Advances and open problems in federated learn-
ing. Foundations and Trends® in Machine Learning, 14(1–
2):1–210, 2021. 10

[30] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

[31] Pang Wei Koh, Shiori Sagawa, Henrik Marklund,
Sang Michael Xie, Marvin Zhang, Akshay Balsubra-
mani, Weihua Hu, Michihiro Yasunaga, Richard Lanas
Phillips, Irena Gao, Tony Lee, Etienne David, Ian Stavness,
Wei Guo, Berton A. Earnshaw, Imran S. Haque, Sara
Beery, Jure Leskovec, Anshul Kundaje, Emma Pierson,
Sergey Levine, Chelsea Finn, and Percy Liang. WILDS:
A benchmark of in-the-wild distribution shifts. In Inter-
national Conference on Machine Learning (ICML), 2021.
https://arxiv.org/abs/2012.07421. 2, 3, 5, 6

[32] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan
Puigcerver, Jessica Yung, Sylvain Gelly, and Neil Houlsby.
Big transfer (bit): General visual representation learning. In
European Conference on Computer Vision (ECCV), 2020.
https://arxiv.org/abs/1912.11370. 1

[33] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do
better imagenet models transfer better? In Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.
https://arxiv.org/abs/1805.08974. 1

[34] Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones,
Tengyu Ma, and Percy Liang. Fine-tuning can distort pre-
trained features and underperform out-of-distribution. In In-
ternational Conference on Learning Representations, 2022.
3, 4, 6

[35] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist hand-
written digit database. 2010. 9

[36] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan
Dyer, Henryk Michalewski, Vinay Ramasesh, Ambrose
Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al.
Solving quantitative reasoning problems with language mod-
els, 2022. https://arxiv.org/abs/2206.14858.
1

[37] Margaret Li, Suchin Gururangan, Tim Dettmers, Mike
Lewis, Tim Althoff, Noah A Smith, and Luke Zettlemoyer.
Branch-train-merge: Embarrassingly parallel training of ex-
pert language models. arXiv preprint arXiv:2208.03306,
2022. 2, 9, 14

[38] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar,
Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith, Brian
Vaughan, Pritam Damania, et al. Pytorch distributed: Expe-
riences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704, 2020. 2, 7, 8, 9

[39] Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtárik.
Acceleration for compressed gradient descent in dis-
tributed and federated optimization. arXiv preprint
arXiv:2002.11364, 2020. 10

[40] Michael Matena and Colin Raffel. Merging models with
fisher-weighted averaging, 2021. https://arxiv.org/
abs/2111.09832. 9

[41] Ryan McDonald, Mehryar Mohri, Nathan Silberman, Dan
Walker, and Gideon Mann. Efficient large-scale distributed
training of conditional maximum entropy models. In Ad-
vances in Neural Information Processing Systems, vol-
ume 22, 2009. 10

[42] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory
Diamos, Erich Elsen, David Garcia, Boris Ginsburg, Michael
Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed
precision training. arXiv preprint arXiv:1710.03740, 2017.
7

[43] Vaishnavh Nagarajan and J. Zico Kolter. Uniform con-
vergence may be unable to explain generalization in deep
learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F.
d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. 9

[44] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang.
What is being transferred in transfer learning? In Advances
in Neural Information Processing Systems (NeurIPS), 2020.
https://arxiv.org/abs/2008.11687. 1, 9

[45] John Nguyen, Kshitiz Malik, Maziar Sanjabi, and Michael
Rabbat. Where to begin? exploring the impact of pre-
training and initialization in federated learning. arXiv
preprint arXiv:2206.15387, 2022. 10

[46] Jose Javier Gonzalez Ortiz, Jonathan Frankle, Mike Rabbat,
Ari Morcos, and Nicolas Ballas. Trade-offs of local sgd at
scale: An empirical study. arXiv preprint arXiv:2110.08133,
2021. 10

[47] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L
Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agar-
wal, Katarina Slama, Alex Ray, et al. Training language
models to follow instructions with human feedback. arXiv
preprint arXiv:2203.02155, 2022. 1

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, pages
8024–8035, 2019. 2, 7

[49] Krishna Pillutla, Kshitiz Malik, Abdel-Rahman Mohamed,
Mike Rabbat, Maziar Sanjabi, and Lin Xiao. Federated
learning with partial model personalization. In Interna-
tional Conference on Machine Learning, pages 17716–
17758. PMLR, 2022. 10

[50] Boris Teodorovich Polyak. New method of stochastic ap-
proximation type. Automation and remote control, 1990. 9

[51] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In International
Conference on Machine Learning (ICML), 2021. https:
//arxiv.org/abs/2103.00020. 1, 2, 3, 5, 6

[52] Colin Raffel. A call to build models like we build open-
source software, 2021. https://colinraffel.com/

12

https://arxiv.org/abs/1803.05407
https://arxiv.org/abs/2012.07421
https://arxiv.org/abs/1912.11370
https://arxiv.org/abs/1805.08974
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2111.09832
https://arxiv.org/abs/2111.09832
https://arxiv.org/abs/2008.11687
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://colinraffel.com/blog/a-call-to-build-models-like-we-build-open-source-software.html

blog/a- call- to- build- models- like- we-
build-open-source-software.html. 10

[53] Benjamin Recht, Christopher Re, Stephen Wright, and Feng
Niu. Hogwild!: A lock-free approach to parallelizing
stochastic gradient descent. Advances in neural information
processing systems, 24, 2011. 10

[54] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do ImageNet classifiers generalize to Im-
ageNet? In International Conference on Machine Learn-
ing (ICML), 2019. https://arxiv.org/abs/1902.
10811. 1, 3, 4

[55] David Ruppert. Efficient estimations from a slowly
convergent robbins-monro process, 1988. https://
ecommons.cornell.edu/handle/1813/8664. 9

[56] Shagun Sodhani, Olivier Delalleau, Mahmoud Assran,
Koustuv Sinha, Nicolas Ballas, and Michael Rabbat. A
closer look at codistillation for distributed training. arXiv
preprint arXiv:2010.02838, 2020. 9

[57] Sebastian U Stich. Local sgd converges fast and communi-
cates little. arXiv preprint arXiv:1805.09767, 2018. 10

[58] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2818–2826, 2016. 5, 9

[59] Hugo Touvron, Matthieu Cord, and Herve Jegou. Deit iii:
Revenge of the vit. arXiv preprint arXiv:2204.07118, 2022.
1, 2, 3, 4, 6, 7, 8

[60] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P
Xing. Learning robust global representations by penalizing
local predictive power. In Advances in Neural Information
Processing Systems (NeurIPS), 2019. https://arxiv.
org/abs/1905.13549. 1, 3, 4

[61] Jue Wang, Binhang Yuan, Luka Rimanic, Yongjun He,
Tri Dao, Beidi Chen, Christopher Re, and Ce Zhang.
Fine-tuning language models over slow networks using
activation compression with guarantees. arXiv preprint
arXiv:2206.01299, 2022. 9, 10

[62] Lilian Weng and Greg Brockman. Techniques for train-
ing large neural networks, 2022. https://openai.
com/blog/techniques-for-training-large-
neural-networks/. 10

[63] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim
Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam
Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien
Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander Rush. Transformers:
State-of-the-art natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages 38–
45, Online, Oct. 2020. Association for Computational Lin-
guistics. 7

[64] Mitchell Wortsman, Maxwell C Horton, Carlos Guestrin,
Ali Farhadi, and Mohammad Rastegari. Learning neu-
ral network subspaces. In International Conference on
Machine Learning (ICML). https://proceedings.
mlr.press/v139/wortsman21a.html. 9

[65] Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Morcos,
Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Ko-
rnblith, et al. Model soups: averaging weights of multi-
ple fine-tuned models improves accuracy without increas-
ing inference time. In International Conference on Machine
Learning (ICML), 2022. https://arxiv.org/abs/
2203.05482. 2, 4, 6, 9, 14

[66] Mitchell Wortsman∗, Gabriel Ilharco∗, Jong Wook Kim,
Mike Li, Simon Kornblith, Rebecca Roelofs, Raphael
Gontijo-Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok
Namkoong, and Ludwig Schmidt. Robust fine-tuning of
zero-shot models. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2021. https://arxiv.
org/abs/2109.01903. 5, 6, 9

[67] Cong Xie, Shuai Zheng, Sanmi Koyejo, Indranil Gupta, Mu
Li, and Haibin Lin. Cser: Communication-efficient sgd with
error reset. Advances in Neural Information Processing Sys-
tems, 33:12593–12603, 2020. 10

[68] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lip-
son. How transferable are features in deep neural net-
works? In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2014. https://arxiv.org/abs/
1411.1792. 1

[69] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv
Kumar, Srinadh Bhojanapalli, Xiaodan Song, James Dem-
mel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimiza-
tion for deep learning: Training bert in 76 minutes. arXiv
preprint arXiv:1904.00962, 2019. 4

[70] Binhang Yuan, Yongjun He, Jared Quincy Davis, Tianyi
Zhang, Tri Dao, Beidi Chen, Percy Liang, Christopher
Re, and Ce Zhang. Decentralized training of foundation
models in heterogeneous environments. arXiv preprint
arXiv:2206.01288, 2022. 9, 10

[71] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 6023–6032, 2019. 4, 14

[72] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe,
Moya Chen, Shuohui Chen, Christopher Dewan, Mona Diab,
Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained trans-
former language models, 2022. https://arxiv.org/
abs/2205.01068. 1, 2, 6

[73] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex
Smola. Parallelized stochastic gradient descent. In Advances
in Neural Information Processing Systems, volume 23, 2010.
10

13

https://colinraffel.com/blog/a-call-to-build-models-like-we-build-open-source-software.html
https://colinraffel.com/blog/a-call-to-build-models-like-we-build-open-source-software.html
https://arxiv.org/abs/1902.10811
https://arxiv.org/abs/1902.10811
https://ecommons.cornell.edu/handle/1813/8664
https://ecommons.cornell.edu/handle/1813/8664
https://arxiv.org/abs/1905.13549
https://arxiv.org/abs/1905.13549
https://openai.com/blog/techniques-for-training-large-neural-networks/
https://openai.com/blog/techniques-for-training-large-neural-networks/
https://openai.com/blog/techniques-for-training-large-neural-networks/
https://proceedings.mlr.press/v139/wortsman21a.html
https://proceedings.mlr.press/v139/wortsman21a.html
https://arxiv.org/abs/2203.05482
https://arxiv.org/abs/2203.05482
https://arxiv.org/abs/2109.01903
https://arxiv.org/abs/2109.01903
https://arxiv.org/abs/1411.1792
https://arxiv.org/abs/1411.1792
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068

A. Negative results when using regularization
to promote model diversity

We also experiment with explicitly regularizing the mod-
els to have diverse predictions. We are motivated by previ-
ous work which shows that having diverse models can lead
to better ensembles or weight-averages [6, 22, 37, 65]. In
particular, we wanted to push apart model predictions from
different nodes. However, in the standard set-up, differ-
ent nodes observe different data. As an alternative to this,
at each iteration we had pairs of nodes observe the same
data. We did this without reducing batch size by using cut-
mix [71] with the data from one node to another. However,
without any further changes, this modification reduced ac-
curay by roughly 0.15pp on ImageNet. We suspect this is
because the models on different nodes became less diverse
by sharing data.

Let y1 and y2 be the predictions from two nodes who
observed the same data. We experimented with adding the
term λ · DKL(y1||y2) to the loss where DKL is the KL di-
vergence. The motivation was that with λ < 0 the models
would become more diverse as in [6]. When λ > 0, this
procedure would become co-distillation [2] and hopefully
accelerate training. However, while λ < 0 improved the
absolute benefit from averaging models, it reduced the per-
formance of the individual models. Moreover, while λ > 0
improved the performance of the individual models, it de-
creased the benefit of averaging. These experiments are pre-
sented in Figure 9, finding that any change to λ lowered
the accuracy of lo-fi. We also experimented with a number
of other approaches to improve diversity, including using
other distance metrics, only pushing apart incorrect exam-
ples, pushing apart model weights, and also taking the PCA
of the predictions and pushing apart in the unimportant PCs.
However, all of these approaches exhibited the same quali-
tative effect: improving diversity reduced individual model
performance and increased the benefit of averaging, but not
by enough to offset the individual model reduction. Interest-
ingly, while our search was not exhaustive, this result may
suggest that simply fine-tuning models with random seeds
might produce the optimal amount of diversity for ensem-
bling and model averaging.

B. A comment on learning rate in Figure 1

A question emerges when examining Figure 1: why does
the accuracy of the individual node first dip before coming
back up? The answer is due to learning rate. While both lo-
fi and the baseline use the same learning rate, which is the
learning rate used by DeiT-III paper of 3e-4, the individ-
ual lo-fi nodes have a smaller global batch. Therefore, this
same learning rate acts larger. We tried to increase the learn-
ing rate for the baseline so that it also had this down-then-
up trend but it resulted in worse accuracy. We also tried

0 5 10 15 20 25
Epochs

84.4

84.6

84.8

85.0

85.2

85.4

85.6

85.8

Im
ag

eN
et

 a
cc

ur
ac

y

KL coefficient 0, parameter average
KL coefficient 0, individual model
KL coefficient 1, parameter average
KL coefficient 1, individual model
KL coefficient -0.1, parameter average
KL coefficient -0.1, individual model

Figure 9. We tried “pushing apart” or “pulling together” the mod-
els at each of the nodes by adding the KL divergence between their
predictions to the loss. Using a positive coefficient is equivalent to
co-distillation [2] which improved the individual models but de-
creased the accuracy of the average. Using a negative coefficient
as in [6] overall increased the improvement from averaging but
decreased the accuracy of the individual models. Overall, these
approaches did not improve lo-fi.

changing the learning rate for lo-fi but this also reduced ac-
curacy. This is similar to an observation made in the context
of EMA in model soups [65], which is that the best model
for averaging weights is not necessarily the best model over-
all. We believe the learning helps individual nodes produce
models which are different, and there is therefore more ben-
efit from their combination.

14

	1 . Introduction
	2 . Methods
	3 . Experiments
	3.1 . Fine-tuning DeiT-III on ImageNet
	3.2 . Fine-tuning CLIP ViT-L on ImageNet and WILDS
	3.3 . Language model fine-tuning
	3.4 . How much is the speed-up, really?
	3.5 . Does jointly training to increase diversity across groups improve lo-fi performance?

	4 . Related work
	5 . Limitations
	6 . Conclusion
	A . Negative results when using regularization to promote model diversity
	B . A comment on learning rate in Figure 1

