
Analyzing Visual Representations in Embodied Navigation Tasks

Erik Wijmans1, 2, 3∗ Julian Straub2 Dhruv Batra1, 3 Irfan Essa3 Judy Hoffman1,3 Ari Morcos1

1Facebook AI Research (FAIR) 2 Facebook Reality Labs (FRL) 3Georgia Insitute of Technology

Abstract

Recent advances in deep reinforcement learn-
ing require a large amount of training data and
generally result in representations that are often
over specialized to the target task. In this work,
we present a methodology to study the underly-
ing potential causes for this specialization. We
use the recently proposed projection weighted
Canonical Correlation Analysis (PWCCA) to
measure the similarity of visual representations
learned in the same environment by performing
different tasks.

We then leverage our proposed methodology
to examine the task dependence of visual rep-
resentations learned on related but distinct em-
bodied navigation tasks. Surprisingly, we find
that slight differences in task have no measur-
able effect on the visual representation for both
SqueezeNet and ResNet architectures. We then
empirically demonstrate that visual represen-
tations learned on one task can be effectively
transferred to a different task.

1 Introduction

Recent advancements in deep reinforcement learning
(deep RL) have allowed for the creation of systems that
are able to out-perform human experts on a variety of
different games such as Chess, Go, Dota2, and Star-
craft2. These advances have heavily relied on sample-
inefficient algorithms that require significant amounts of
task-specific training episodes, making them computa-
tionally expensive to run. Furthermore, deep RL has been
found to be capable of overfitting to the training task,
even for complex problems (Zhang et al., 2018), or fail-
ures when the environment is altered (even if this, in turn,

∗ Work done while an intern at FRL and FAIR. Correspon-
dence to etw@gatech.edu

simplifies the task (Ruderman et al., 2019)). These obser-
vations call into question whether representations learned
with one training task will be reusable for novel tasks.

The generality and reuse-ability of representations is a
desirable and powerful property as it allows knowledge to
be transferred between tasks and can help alleviate a lack
of data. In the regime of supervised learning, it is well
known that deep neural networks are capable of overfitting
on tasks and memorizing random labels (Zhang et al.,
2016), making it reasonable to expect that representations
would be highly tuned to their training task. However,
many have shown that representations trained for one
task perform well for other tasks, both as an initialization
for fine-tuning and as a static feature-extractor (Girshick,
2015; Anderson et al., 2018b). Resolving this discrepancy
is an area of much debate and active research (Neyshabur
et al., 2019; Golowich et al., 2018; Arora et al., 2018;
Morcos et al., 2018b).

Reusing representations provides a promising avenue for
the emerging field of training virtual robots in simulation
before transfer learned skills to reality. There have been
a number of recent works proposing to train robots as
Embodied Agents in simulated environments with the ul-
timate goal of transferring agents learned in simulation to
reality (Das et al., 2018; Wijmans et al., 2019; Savva et al.,
2019). The ability to reuse representations for new tasks
and in new environments is of particular concern to the
goal of transferring embodied agents from simulation to
reality. Once in the real world, an agent should be capable
of learning new tasks – such as finding new objects or
handling new questions – and be able to cope with the
non-stationarity of a changing world. Thus, we seek to
answer the following question: Do different embodied
navigation tasks induce different visual representations?

Contributions. First, we adapt the methodologies pro-
posed in Raghu et al. (2017) and Morcos et al. (2018a)
to examine the impact the task has on the visual repre-
sentation. Given two networks, these works compute

ar
X

iv
:2

00
3.

05
99

3v
1 

 [
cs

.C
V

] 
 1

2 
M

ar
 2

02
0



their similarity in visual representation by computing the
similarity in activations over a set of inputs.

We then study our primary question in the context of the
task of Object Navigation (ObjectNav), e.g. ‘Go to the
fridge’. We define two different embodied tasks by con-
structing disjoint splits of target objects, allowing us to
understand the exact differences between our tasks. We
first perform our experiments using SqueezeNet1.2 (Ian-
dola et al., 2016) as parameter efficient networks would
be a good choice for embodied agents deployed on real
robots. We find that, surprisingly, differences in the task
do not lead to a measurable effect on the visual represen-
tation. We leverage this knowledge to show that visual
representations trained for one tasks are useful for learn-
ing another, and, surprisingly, allow for more sample
efficient learning.

We then consider how our choice of CNN impacted our
findings by performing our analysis on a second CNN, a
version of ResNet50 (He et al., 2016) modified to have a
comparable number of parameters to SqueezeNet1.2, and
find similar conclusions.

Finally, to evaluate the extent to which these results are
environment dependent, we generalize our analysis to
multiple permutations of an environment and demonstrate
representations learned in one permutation of an environ-
ment are effective for the other permutations.

2 Related Work

Representation analysis. Analyzing the representations
of deep neural networks has been the subject of many
works. Initial works focused on analyzing individual neu-
rons (Li et al., 2016; Arpit et al., 2017; Morcos et al.,
2018b). In this work, however, we examine the entire
representation. Our closest related works, Raghu et al.
(2017); Morcos et al. (2018a), propose methods to ex-
amine the entire representation of neural networks in the
context of standard image classification tasks. We adopt
their analysis tools and utilize them to analyze neural
networks in the context of embodied-vision tasks and re-
inforcement learning. See Section 3.1 for a more detailed
discussion of the benefits of these methods.

Reward-free reinforcement learning. Transfer of
knowledge and representations is a paradigm commonly
used in task-agnostic and reward-free reinforcement learn-
ing. The goal of this paradigm is to allow the agent to
interact with its environment such that it gains general
knowledge, thereby allowing it to learn downstream tasks
with less samples. These works provide the agent with
a reward signal such that it will explore its environment
(or state-space). This can be formulated from an infor-
mation theoretic standpoint to provide intrinsic motiva-

tion (Jung et al., 2011). Others provide a more direct
signal in the form of exploration based rewards (Burda
et al., 2018). We differ from these works by using repre-
sentations learned via task-driven reinforcement learning
directly for a different task.

Transfer Learning. Transfer learning seeks to transfer
knowledge between a domain with labeled data to another
domain (Pan & Yang, 2009). Transfer learning has also
been studied in the context of reinforcement learning by
designing specific objectives or model structures such that
knowledge can be transferred between two tasks (Taylor
& Stone, 2009). We do not use any specific architecture
or objectives and examine task dependence of vanilla
architectures.

3 Approach

In this section, we outline our proposed methodology for
examining the effecting of the training task on the visual
representation. We then outline the tasks we will utilize
in our experiments.

3.1 Measuring the similarity of representations

In order to examine the impact of the training task on
the learned visual representation, we first need a princi-
pled way to measure how similarity of two learned visual
representations.

A perhaps straight-forward approach to measuring the
similarity of representations would be to simply measure
the distance (e.g., Euclidean or cosine) between their rep-
resentations of the same inputs. However, this approach
is ill-suited to neural networks. Consider the following
toy example: For a set of inputs X , suppose that func-
tion f produces a representation that is uniform on the
N-ball and define f ′ = Af for an affine transform A.
A simple distance calculation (or alternatively, dimen-
sionality reduction and clustering) would report a high
distance between the two representations. Accounting
for affine transformations is important when analyzing
neural networks as, for any given layer, one can apply any
affine transformation to the activations and the inverse to
the next layer’s weights without changing the network.
Given two neural networks trained in the exact same way
modulo the random seed, there is no reason why their
representations would be aligned despite computing very
similar (if not exact the same) functions (Li et al., 2016).

Instead, we follow the approach of Raghu et al. (2017);
Morcos et al. (2018a) to compare the representations of
two deep neural networks. Given two neural networks, A
and B, and a set of N inputs, Raghu et al. (2017); Morcos
et al. (2018a) compare the representations at layer L of
both networks by 1) extracting the neuron activation ma-



trix, X , of both networks – where Xi,j is the activation
of the ith neuron on the jth input; and 2) compute the
distance between the neuron activation matrices using
Canonical Correlation Analysis (CCA), a classic statisti-
cal technique (Hotelling, 1936). CCA finds a basis which
maximizes the correlation between two matrices and then
computes the correlation in that basis, thereby account for
any affine transformations between two representations.
It is worth noting that CCA (and variants) do not capture
the “usefulness” of representation to the downstream task.

We follow the technique proposed by Morcos et al.
(2018a) to account for differing numbers of noise dimen-
sions between representations. This method weights CCA
correlation coefficients by the amount of variance each
CCA direction explains in the real data. Given each of the
CCA directions hi and correlation coefficients ρi, Morcos
et al. (2018a) first computes the projection coefficients

αi =
∑
k

|〈di, Xk〉| (1)

and then computes 1 minus the weighted average of the
correlation coefficients,

Dpwcca = 1.0− 1∑
k αk

∑
k

αkρk (2)

as the distance between representations.

3.2 Measuring the task dependence of learned
visual representations.

Given that we now have a principled way to measure
the similarity of learned visual representations, we now
outline our proposed method task dependence.

Consider two sets of embodied navigation tasks, A and
B, that are learnable in the same environment (or set of
environments) and contain no overlap, i.e. A∩B = ∅. A
naive approach to using PWCCA to measuring the effect
of different task sets on the representation learned would
be to train a policy for A and a policy for B and then
measure the dissimilarity. Such an approach wouldn’t
control for the effect of different random initialization,
and, more importantly, wouldn’t ground the values re-
ported by PWCCA (which is a unitless metric). Instead,
we follow the approach of Morcos et al. (2018b) and
compare the distance between models trained on different
tasks to the distance between models trained on the same
task. If the distance between models trained on different
tasks is higher than that between models trained on the
same task, representations are task-dependent whereas if
the distance between models trained on different tasks is
the same as that between models trained on the same task,
representations are task-agnostic.

3.3 Experimental setup

Task. We examine the task of Object Goal Navigation
(ObjectNav) due to its reliance on both semantic and spa-
tial understanding. In ObjectNav, an agent is given a token
describing an object in the environment, such as fridge,
and then must navigate through the environment until it
finds a good view of the fridge and calls the stop action.
To avoid under-specification of the task, we restrict target
objects to have at most two instances for a given class.
Note that each target object is specified uniquely by its
object ID.

The reward at time t is given as follows:

Rt =

{
IoUt

IoUmax
action = stop

−0.05 ·∆geo_dist otherwise

Where IoU is the intersection over union between the se-
mantic segmentation of the target object and a predefined
bounding box. IoUt is the IoU at the agents current
position. IoUmax is the maximum possible IoU for the
target object as determined by exhaustive search within a
reasonable radius of the target object.

Environment. We use the extreme high-fidelity recon-
structions in the Replica Dataset (Straub et al., 2019) and
simlate agents utilizing AI Habitat (Savva et al., 2019).
We utilize these environment so that our analysis will be
more applicable to the ultimate goal of agents operating in
reality. See Fig. 1 for a top-down view of an environment
and the supplement for example agent views.

Agent. The agent has 4 primitive actions, move_forward,
which moves 0.25 meters forward; turn_left and
turn_right (which turn 10 degrees left and right, respec-
tively), and stop which signals that the agent believes
it has completed its task. At every time-step, the agent
receives an egocentric RGB image and the token specifying
the target object.

Policy. We parametrize our agent with 3 components. A
visual encoder, a target encoder, and a recurrent policy.
The visual encoder utilizes SqueezeNet1.2 (Iandola et al.,
2016) as the backbone architecture as its combination of
parameter efficiency and representational power is a logi-
cal choice for embodied agents deployed on real robots.
The target encoding is a 128 dimensional vector that is
learn-able and unique for each target object. The policy
consists of a GRU (Cho et al., 2014) followed by 2 fully
connected layers. See the supplementary for more de-
tails. Note that the vast majority (∼80%) of the learnable
parameters are in the visual encoder. The policy and tar-
get encoding make approximately 20% of the parameters
(∼ 330× 103 of the total∼ 1.7× 106). This is key to our
analysis as otherwise the network is able to perform the



task with a frozen randomly initialized visual encoder.

Training. We use Proximal Policy Optimization (PPO)
Schulman et al. (2017) with Generalized Advantage Es-
timation Schulman et al. (2015). We set the discount
factor, γ, to 0.99 and τ to 0.95. We collect 128 frames of
experience from 32 agents running in parallel (possibly
working on different tasks) and then perform 4 epochs
of PPO with 2 mini-batches per epoch. We utilize the
Adam optimizer Kingma & Ba (2014) with a learning rate
of 10−4 and a weight decay of 10−5. Note that unlike
popular implementations of PPO, we do not normalize
advantages as we find this often leads to instabilities dur-
ing training. We train for 15,000 rollouts (∼ 61 × 106

steps of experience) to ensure converge across different
random seeds.

4 How task-depdendent are learned
representations?

Core Hypothesis. Training for different embodied tasks
induces different visual representations. Due to Deep
RL’s ability to overfit on even complicated tasks, it is
reasonable to expect that the representations learned will
be highly tuned to their specific task.

Two tasks. To gain insight into the impact of task differ-
ences on visual representations, we must first understand
the differences between the tasks themselves. An ideal
task set should contain tasks for which the learning and
reward dynamics are very similar, but which differ in
simple and easily understandable ways. To accomplish
this, we randomly divide the set of target objects, X , into
two equally sized and disjoint subsets A and B such that
A ∩ B = ∅, A ∪ B = X , and |A| = |B| (assuming
|X | is even). We average our results over three different
choices of A and B. These two tasks therefore share the
same environment and action space and have similar vi-
sual statistics, but differ only in the set of target objects
to which the agent must navigate. To control for the ef-
fect of any particular environment, we rerun these results
over 4 additional environments in the Replica dataset –
apartment_0, office_2, room_0, frl_apartment_0.

To compare representations across different tasks, we
train N networks for A and N networks for B, compute
the PWCCA distance for each pair of networks, and then
average over the N2 pairwise comparisons. To compare
representations learned for the same task, we take the N
networks trained on A (or B), and compute the PWCCA
distance for the

(
N
2

)
network pairs.

We use the following notation to denote our comparison:
comparisons across networks trained on the same task
are denoted without a dash, e.g. A is the comparison of
networks trained on A among themselves. Comparisons

Figure 1: Top-down view in the environment. Circles
denote the location of all target objects.

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11 12 13 14 15

Layer

0.0

0.1

0.2

0.3

0.4

D
pw

cc
a

Randomly Split – SqueezeNet

A

B

A-B

Figure 2: PWCCA results of comparing networks trained
on different embodied task. Surprisingly, the visual repre-
sentation learned is not influenced by the set of target ob-
jects (more than the random seed alone). Down-sampling
layers are marked with [s=2]. Shading around the line
corresponds to a 95% confidence interval calculated via
empirical bootstrapping.

across networks trained on different tasks are denoted
with a dash, e.g. A-B is the comparison between networks
trained on A and networks trained on B.

Representations are not influenced by the training
task. If networks trained on different tasks learn different
representations, we would expect the A-B distance to be
higher than that for A or B alone. In contrast, we found
that distances were similar regardless of task trained, sug-
gesting that networks learn task-agnostic visual represen-
tations, Fig. 2. This result is surprising as it implies that
the differences in learning dynamics, reward, and incen-



2 3 4 5 6 7 8 9 10

Iterations (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Randomly Split – SqueezeNet – B
Scratch
A → B, New Policy
A → B, Fine-tuned Policy

(a) Results of transferring policies learned on A to B. We see
that the visual representation learned on A allows for more
sample efficient learning of B.

2 3 4 5 6 7 8 9 10

Iterations (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Randomly Split – SqueezeNet – A ∪ B
Scratch
A → B, New Policy
A → B, Fine-tuned Policy

(b) Results of transferring policies learned on A to A ∪ B. As
in Fig. 3a we see that the visual encoder learned on A is well
suited to the new task.

tives induced by the different target splits have no more
impact on the representation than the random seed alone.
Despite arising directly from training on that set of target
object, the visual representation shows no bias in how it
represents the environment. To determine whether this
effect is dependent on the particular environment used, we
repeated this analysis across four additional environments
and found similar trends (Fig. A3). A direct and action-
able implication of this result is that the representation
learned for one task should transfer to another.

5 Transferring between A and B

We aim to generate policies with task agnostic visual rep-
resentations as we hope that these visual representations
can be easily adapted to new tasks. In this section, we
evaluate whether the PWCCA results above, which sug-
gest that agents learn task-agnostic representations, also
imply that representations learned on A are sufficient to
learn B.

Setup. We examine two types of transfer experiments: 1)
transferring the policy learned on A to B (or from B to
A), and 2) transferring the policy learned on A to A ∪ B
(the full set of targets). In all transfer experiments, every
layer of the visual encoder is frozen. We consider both
fine-tuning the policy learned on A and learning a new
policy from scratch.

Results. As suggested by the PWCCA experiments, we
found that visual representations learned on A are effec-
tive for learning both B and A ∪ B (Fig. 3a, Fig. 3b). We
also found fine-tuning to be more effective than learning
a new policy from scratch, suggesting that general naviga-
tion skills can transfer in addition to visual representations.

These results suggest that the representational similarity
observed in Sec. 4 leads to directly transferable represen-
tations, and confirms that agents in this environment learn
task-agnostic representations.

Sample efficient learning of new target objects. We
also consider the sample efficiency of learning B with
a frozen visual representation trained for A compared
to learning B from scratch. Imagine an agent deployed
as a home robot: it can be pre-trained for some set of
target objects but then must be capable of learning new
objects over time. Ideally we would be able to share and
re-use large parts of the agent – its visual encoder for
instance – to learn these new target objects. The results
in Fig. 3a imply that using the representation learned on
A as a feature-extractor may provide an efficient method
for learning new sets of target objects.

We measure sample efficiency by training with five differ-
ent random seeds and recording the number of iterations
(rollouts) needed to reach a reward of 0.8 on average,
which represents good performance on this task. We
compare learning B from scratch, and learning B with
a frozen visual representation pre-trained on A. While
Fig. 3b shows that fine-tuning a copy of the existing pol-
icy is more sample efficient, we examine the more general
case of learning the policy from scratch.

Surprisingly, utilizing a frozen visual representation
learned on A is a more sample efficient strategy for learn-
ing B than learning B from scratch (Fig. 3a), suggesting
that the visual represnetation learned on A is generaliz-
able. We note that learning B could potentially be done
more efficiently as we have not optimized our selection
of reinforcement learning algorithm for sample efficiency.
An additional benefit of re-using and freezing the visual



1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11

12
-[
s=
2] 13 14 15 16

Layer

0.1

0.2

0.3

0.4

D
pw

cc
a

Randomly Split – ResNet35

A

B

A-B

(a) PWCCA results for randomly split target objects for the
ResNet35 model. We find similar trends to SqueezeNet Fig. 2.

2 3 4 5 6 7 8 9 10

Iterations (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Randomly Split – ResNet35

B, A → B
B, scratch

(b) Transfer to B results for randomly split target objects for
the ResNet35 model. Consistent with Fig. 3a, we see improved
sample efficiency when utilizing a frozen visual representation
learned on A.

encoder is that reinforcement learning algorithms which
provide increased sample efficiency but have difficulties
scaling to millions of parameters can be used instead.

6 A different architecture

Next, we test how these trends transfer to a differ-
ent architecture. Specifically, we examine a modified
ResNet50 (He et al., 2016) architecture. We reduce the
number of parameters such that the network has a similar
number of parameters to SqueezeNet1.2 (Iandola et al.,
2016). The resultant network has 35 layers, and we there-
fore refer to it as ResNet35. We replace all Batch Nor-
malization layers with Group Normalization (Wu & He,
2018) layers to account for highly correlated observations
seen in on-policy reinforcement learning. See the sup-
plementary material for more details. We train with the
previous procedure and hyper-parameters.

Consistent with SqueezeNet models, we found that ran-
domly distributed target objects have no effect on the
visual representation learned (Fig. 4a, Fig. 4b), indicating
that our initial choice of CNN had no impact on this result.
We repeat this analysis over four additional environments
and find similar trends (see Fig. A4). We also observe an
interesting behavior between the down-sampling layers;
the distance between representations induced by different
random seeds decreases. This suggests that residual con-
nections help networks learn more similar representations.
Fig. 4b shows the results of using a representation learned
onA to learn B. We once again see that the representation
learned on A is sufficient for learning B and that this is a
more sample efficient strategy than training a network for

B from scratch.

7 Generalization to multiple environments

Finally, we generalize our analysis to multiple environ-
ments. The Replica dataset contains 6 different version
of the same environments with dramatically different con-
figurations of the objects (see frl_apartment_{0-5}).
This gives us a setting where all environments contain
the same objects (i.e. table and chairs in various differ-
ent locations) and structural elements, but have different
floor-plans for the agent to navigate.

Utilizing this set of environments we look at the ques-
tion Does the representation depend on the position of
objects?. In order to examine this question, we utilize the
task of PointGoal Navigation (Anderson et al., 2018a).
In PointGoal Navigation, the agent must navigation to a
point specified in egocentric coordinates (i.e. go 5 me-
ters forward and 2 meters to the left). As in Savva et al.
(2019), we equip the agent with an RGB camera and
GPS+Compass sensor (giving the agent access to its posi-
tion and orientation relative to its starting location). We
follow the reward structure from Wijmans et al. (2020).
We construct A as a random selection of 3 environments
and B is the remaining. We once again find that the rep-
resentation learned is surprisingly invariant to changes
(Fig. 5a, Fig. 5b) – the location of objects does not impact
the representation in a measurable way. We verify this
with transfer experiments and find that, in this case, the
information learned in environmentsA is sufficient to per-
form the task well in environments B (Fig. 5c,Fig. 5d).



1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11 12 13 14 15

Layer

0.0

0.1

0.2

0.3

D
pw

cc
a

Replica PointNav – SqueezeNet

A

B

A-B

(a) PWCCA results for disjoint sets of training environments.

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11

12
-[
s=
2] 13 14 15 16

Layer

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
pw

cc
a

Replica PointNav – ResNet35

A

B

A-B

(b) PWCCA results for disjoint sets of training environments.

2 3 4 5 6 7 8 9 10

Iterations (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
ew

ar
d

Replica PointNav– SqueezeNet

Scratch
A → B, New Policy
A → B, Fine-tuned Policy

(c) Transfer results for disjoint sets of training environments.

2 3 4 5 6 7 8 9 10

Iterations (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
R

ew
ar

d

Replica PointNav– ResNet35

Scratch
A → B, New Policy
A → B, Fine-tuned Policy

(d) Transfer results for disjoint sets of training environments.

Figure 5: Results of training agents in environments with different layouts. We find that variations in the layout of an
environment do not influence the visual representation learned.

8 Discussion

We present a series of results and analysis centered around
the question: Do different embodied navigation tasks
induce different visual representations? To answer this
question, we used PWCCA (Raghu et al., 2017; Morcos
et al., 2018a) to measure the influence of the task on the
representation, the first to do so for deep RL. We then
constructed two embodied navigation tasks by creating
disjoint splits of target objects for the task of ObjectNav.
We found that for both SqueezeNet and ResNet visual
encoders, the task does not influence visual representation,
allowing for use in learning new tasks in a sample efficient
manner.

Caveats. Our results and analysis have the following
primary caveat. The two tasks we examine, while distinct,
are quite similar. Designing experiments for this type
of analysis across tasks with less similarity while not
introducing too many additional variables is an avenue
for future work.

Takeaways. We show that under certain settings, task
agnostic visual representation can be induced. Our results
suggest that on ingredient is coverage of the visual space
that will be seen, implying that designing tasks and en-
vironments which maximize the visual diversity seen by
the agent is paramount.



A Architecture Details

A.1 SqueezeNet Encoder

For our SqueezeNet1.2 (Iandola et al., 2016) based visual
encoder, we utilize all layers expect for the final convo-
lution and global average pool. Given a 224×224 image,
this produces a (512×13×13) feature map. We follow
this with two convolution layers, Conv-[42, k=3, d=2],
Conv-[21, k=3, d=1] where d specifies the dilation, to
produce a (21×7×7) feature map. This feature map is
then flattened and transformed to a 256d vector with a
fully connected layer.

A.2 ResNet Encoder

We construct ResNet35 from ResNet50 (He et al., 2016)
as follows – We start with all residual layers (all layers
minus the global average pool and sofmax classifier). We
then reduce the number of output channels at each layer by
a factor of 4. We then remove 1 residual block within each
layer and remove an additional residual block in the 3rd
layer. ResNet50 contains 3 blocks in the first layer, 4 in
the second, 6 in the third, and 3 in fourth. Our ResNet35
contains 2 blocks in the first layer, 3 in the second, 4
in the third, and 2 in the fourth. We replace all Batch
Normalization layers with Group Normalization (Wu &
He, 2018) layers, to account for the highly correlated
observations seen in on-policy reinforcement learning.

We reduce the 512×7×7 feature map to 41×5×5 with
two convolution layers, Conv-[41, k=1], Conv-[41,
k=3]. This feature map is then flattened and transformed
to a 256d vector with a fully connected layer.

A.3 Policy

Given the 256-d visual feature, we concatenate the 128-
d target encoding and use the resulting 384-d vector as
input to a single layer GRU (Cho et al., 2014) with a 256-
d hidden state. The hidden state is reduced to 128-d with
a fully connected layer, and the 128-d representation is
used to produced the softmax distribution over the action
space and estimate the value function.

B Implementation Details

Models are trained on a single node with 8 Tesla V100
GPUs. We use PyTorch to train our agent.

We utilize the publicly available implementation of PW-
CAA (Morcos et al., 2018a): https://github.com/
google/svcca.

References

Peter Anderson, Angel Chang, Devendra Singh Chaplot,
Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun,
Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi,
Manolis Savva, et al. On evaluation of embodied
navigation agents. arXiv preprint arXiv:1807.06757,
2018a.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
Bottom-up and top-down attention for image caption-
ing and visual question answering. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 6077–6086, 2018b.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and
Yi Zhang. Stronger generalization bounds for deep
nets via a compression approach. ICML, 2018.

Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas,
David Krueger, Emmanuel Bengio, Maxinder S Kan-
wal, Tegan Maharaj, Asja Fischer, Aaron Courville,
Yoshua Bengio, et al. A closer look at memorization
in deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pp.
233–242. JMLR. org, 2017.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg
Klimov. Exploration by random network distillation.
arXiv preprint arXiv:1810.12894, 2018.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. Learning phrase representations
using rnn encoder-decoder for statistical machine trans-
lation. arXiv preprint arXiv:1406.1078, 2014.

Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan
Lee, Devi Parikh, and Dhruv Batra. Embodied Ques-
tion Answering. In CVPR, 2018.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE
international conference on computer vision, pp. 1440–
1448, 2015.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir.
Size-independent sample complexity of neural net-
works. Conference On Learning Theory, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 770–778, 2016.

H Hotelling. Relations between two sets of variates.
Biometrika, 1936.

Forrest N Iandola, Song Han, Matthew W Moskewicz,
Khalid Ashraf, William J Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer

https://github.com/google/svcca
https://github.com/google/svcca


parameters and< 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

Tobias Jung, Daniel Polani, and Peter Stone. Empow-
erment for continuous agent—environment systems.
Adaptive Behavior, 19(1):16–39, 2011.

Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and
John E Hopcroft. Convergent learning: Do different
neural networks learn the same representations? In
ICLR, 2016.

Ari Morcos, Maithra Raghu, and Samy Bengio. Insights
on representational similarity in neural networks with
canonical correlation. In NeurIPS, 2018a.

Ari S Morcos, David GT Barrett, Neil C Rabinowitz,
and Matthew Botvinick. On the importance of single
directions for generalization. ICLR, 2018b.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli,
Yann LeCun, and Nathan Srebro. The role of over-
parametrization in generalization of neural networks.
ICLR, 2019.

Sinno Jialin Pan and Qiang Yang. A survey on transfer
learning. IEEE Transactions on knowledge and data
engineering, 22(10):1345–1359, 2009.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha
Sohl-Dickstein. SVCCA: Singular vector canonical
correlation analysis for deep learning dynamics and
interpretability. In NeurIPS, 2017.

Avraham Ruderman, Richard Everett, Bristy Sikder, Hu-
bert Soyer, Charles Beattie, Jonathan Uesato, Ananya
Kumar, and Pushmeet Kohli. Uncovering surprising
behaviors in reinforcement learning via worst-case anal-
ysis. Safe Machine Learning workshop at ICLR, 2019.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub,
Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh,
and Dhruv Batra. Habitat: A Platform for Embodied
AI Research. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), 2019.

John Schulman, Philipp Moritz, Sergey Levine, Michael
Jordan, and Pieter Abbeel. High-dimensional contin-
uous control using generalized advantage estimation.
arXiv preprint arXiv:1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint, 2017.

Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen,
Erik Wijmans, Simon Green, Jakob J. Engel, Raul

Mur-Artal, Carl Ren, Shobhit Verma, Anton Clark-
son, Mingfei Yan, Brian Budge, Yajie Yan, Xiaqing
Pan, June Yon, Yuyang Zou, Kimberly Leon, Nigel
Carter, Jesus Briales, Tyler Gillingham, Elias Mueg-
gler, Luis Pesqueira, Manolis Savva, Dhruv Batra,
Hauke M. Strasdat, Renzo De Nardi, Michael Goe-
sele, Steven Lovegrove, and Richard Newcombe. The
Replica dataset: A digital replica of indoor spaces.
arXiv preprint arXiv:1906.05797, 2019.

Matthew E Taylor and Peter Stone. Transfer learning for
reinforcement learning domains: A survey. Journal of
Machine Learning Research, 10(Jul):1633–1685, 2009.

Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Ab-
hishek Das, Georgia Gkioxari, Stefan Lee, Irfan Essa,
Devi Parikh, and Dhruv Batra. Embodied question
answering in photorealistic environments with point
cloud perception. arXiv preprint arXiv:1904.03461,
2019.

Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee,
Irfan Essa, Devi Parikh, Manolis Savva, and Dhruv
Batra. Dd-ppo: Learning near-perfect pointgoal navi-
gators from 2.5 billion frames. ICLR, 2020.

Yuxin Wu and Kaiming He. Group normalization. In
Proceedings of the European Conference on Computer
Vision (ECCV), pp. 3–19, 2018.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. Understanding deep learn-
ing requires rethinking generalization. arXiv preprint
arXiv:1611.03530, 2016.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy
Bengio. A study on overfitting in deep reinforcement
learning. arXiv preprint, 2018.



Figure A1: Example images from the environments we
utilize.

2 3 4 5 6 7 8 9 10

Iterations (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Randomly Split – SqueezeNet

A ∪ B, scratch
A, scratch
B, scratch

2 3 4 5 6 7 8 9 10

Iterations (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Randomly Split – ResNet35

A ∪ B, scratch
A, scratch
B, scratch

Figure A2: Reward curves for both on A. B, and A ∪ B.



1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11 12 13 14 15

Layer

−0.02

0.00

0.02

0.04

∆
D

pw
cc

a

Randomly Split – SqueezeNet

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11 12 13 14 15

Layer

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
pw

cc
a

Randomly Split – Environment 0 – SqueezeNet

A

B

A-B

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11 12 13 14 15

Layer

0.0

0.1

0.2

0.3

0.4

D
pw

cc
a

Randomly Split – Environment 1 – SqueezeNet

A

B

A-B

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11 12 13 14 15

Layer

0.0

0.1

0.2

0.3

0.4

D
pw

cc
a

Randomly Split – Environment 2 – SqueezeNet

A

B

A-B

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11 12 13 14 15

Layer

0.0

0.1

0.2

0.3

D
pw

cc
a

Randomly Split – Environment 3 – SqueezeNet

A

B

A-B

Figure A3: SqueezeNet results for randomly split sets of
target objects on 4 environments from the replica dataset.
First plot shows the average ∆Dpwcca = Dpwcca(A-B)−
(Dpwcca(A)−Dpwcca(B))/2.0 across all environments.

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11

12
-[
s=
2] 13 14 15 16

Layer

−0.03

−0.02

−0.01

0.00

0.01

0.02

∆
D

pw
cc

a

Randomly Split – ResNet35

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11

12
-[
s=
2] 13 14 15 16

Layer

0.05

0.10

0.15

0.20

0.25

0.30

D
pw

cc
a

Randomly Split – Environment 0 – ResNet35

A

B

A-B

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11

12
-[
s=
2] 13 14 15 16

Layer

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
pw

cc
a

Randomly Split – Environment 1 – ResNet35

A

B

A-B

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11

12
-[
s=
2] 13 14 15 16

Layer

0.0

0.1

0.2

0.3

0.4

D
pw

cc
a

Randomly Split – Environment 2 – ResNet35

A

B

A-B

1-
[s
=2
]

2-
[s
=2
] 3 4

5-
[s
=2
] 6 7

8-
[s
=2
] 9 10 11

12
-[
s=
2] 13 14 15 16

Layer

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
pw

cc
a

Randomly Split – Environment 3 – ResNet35

A

B

A-B

Figure A4: ResNet35 results for randomly split sets of
target objects on 4 environments from the replica dataset.
First plot shows the average ∆Dpwcca = Dpwcca(A-B)−
(Dpwcca(A)−Dpwcca(B))/2.0 across all environments.


