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Abstract

Recent progress in self-supervised learning has demonstrated promising results in multiple
visual tasks. An important ingredient in high-performing self-supervised methods is the use
of data augmentation by training models to place different augmented views of the same
image nearby in embedding space. However, commonly used augmentation pipelines treat
images holistically, ignoring the semantic relevance of parts of an image—e.g. a subject
vs. a background—which can lead to the learning of spurious correlations. Our work
addresses this problem by investigating a class of simple, yet highly effective “background
augmentations”, which encourage models to focus on semantically-relevant content by
discouraging them from focusing on image backgrounds. Through a systematic investigation,
we show that background augmentations lead to substantial improvements in performance
across a spectrum of state-of-the-art self-supervised methods (MoCo-v2, BYOL, SwAV) on
a variety of tasks, e.g. ∼ +1-2% gains on ImageNet, enabling performance on par with the
supervised baseline. Further, we find the improvement in limited-labels settings is even
larger (up to 4.2%). Background augmentations also improve robustness to a number of
distribution shifts, including natural adversarial examples, ImageNet-9, adversarial attacks,
ImageNet-Renditions. We also make progress in completely unsupervised saliency detection,
in the process of generating saliency masks used for background augmentations.

Keywords: self-supervised learning, contrastive learning, representation learning, back-
ground augmentation, out-of-distribution generalization, robustness

1. Introduction

Learning useful representations in the absence of labels is a critical challenge in machine
learning. Recently, self-supervised (SSL) methods such as SimCLR (Chen et al., 2020a),
MoCo-v2 (He et al., 2020; Chen et al., 2020c), BYOL (Grill et al., 2020), and SwAV
(Caron et al., 2020) have risen to prominence because they are able to produce high-quality
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representations that rival supervised representations on vision tasks. These methods differ in
the details of their approach—e.g. some are instance based (MoCo-v2, SimCLR) while others
are cluster based (SwAV), some explicitly utilize negatives while others do not (BYOL),
and some use a memory bank (MoCo-v2). In fact, competitive performance has recently
been achieved by SimSiam (Chen and He, 2020) without any of these additions. However,
a central ingredient common to all high performing SSL methods is their reliance on data
augmentation as a means of encoding desired invariances. Two views of an image are created
via independent samples from the data augmentation pipeline, and the objective is view-
invariance, i.e. the encoder is trained to place them near each other in representational space.
Thus, the choice of data augmentation is critical, as augmentations and the invariances
they encourage are the primary teaching signal these methods utilize to create semantically
meaningful representations.

In fact, Chen et al. (2020a) explored a large space of standard augmentations and demon-
strated that the choice of these augmentations can have dramatic effects on performance.
However, this standard suite of augmentations used in most SSL methods was modified from
augmentations designed for supervised approaches. It may therefore be useful to design new
augmentation schemes for SSL that specifically target semantic focus for this setting.

A parallel line of inquiry has found that supervised models often rely on non-semantic
features that may nonetheless be predictive at test time. Models often overly focus on
backgrounds (Xiao et al., 2021a; Sehwag et al., 2020; Beery et al., 2018), are brittle to
distribution shift in foreground-background statistics, and rely on high-frequency information
(Jo and Bengio, 2017; Ilyas et al., 2019). Models are also susceptible to adversarial attacks
(Goodfellow et al., 2015; Jo and Bengio, 2017), often rely on texture over shape (Geirhos
et al., 2019, 2020; Hermann et al., 2020) and are brittle to distribution shift in local texture
(e.g. paintings, sculpture, Hendrycks et al. (2021)) as well as to corruptions (e.g. blur,
contrast, Hendrycks and Dietterich (2019)). Importantly, the benefits or limitations of a
modeling choice on robustness are not apparent from metrics on standard tasks (Hendrycks
et al., 2019a). All of these results showcase the need for comprehensive model evaluation
across diverse data sets and settings. We broadly encompass such comprehensive evaluation
under robustness, e.g. robustness to distribution shifts (e.g. paintings, blurring, different
background statistics), robustness to adversarial attacks, robustness to label scarcity.

While there has been much work investigating robustness properties in the supervised
setting, the self-supervised setting has received relatively less attention. As SSL methods
shrink the gap to their supervised counterparts, it has become increasingly important to
characterize their robustness properties and gain a more holistic understanding. The aim of
this work is twofold: characterizing the robustness of high performing SSL methods and
investigating approaches for improved semantic focus via a class of augmentations called
background augmentations.

We conduct a systematic, comprehensive investigation of the robustness properties of
SSL methods as well as the impact of background augmentations in improving semantic
focus across a) a spectrum of high performing SSL methods, b) training durations, c) three
variants of background augmentations, d) different foreground extraction methods used
in background augmentations, and e) a wide range of downstream data sets and tasks,
including 17 distribution shift settings.
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Specifically, we study three classes of approaches: BG RM, in which a subset of backgrounds
are removed during the augmentation process, BG Random, in which backgrounds are replaced
with random backgrounds from other images in the mini-batch, and BG Swaps, in which
a selection of backgrounds are swapped between positive and negative images to match
backgrounds across the query and the negative, thereby explicitly penalizing background
focus.

We highlight the following contributions:

• Novel background augmentation method. We develop and analyze a novel, highly
effective background augmentation method BG Swaps, which manipulates the back-
grounds of positives and negatives in a structured manner, yielding large performance
and robustness benefits.

• Sizeable performance benefits. We show sizeable performance improvements for
all view-invariant SSL methods, yielding consistent improvements of ∼1-2% in linear
evaluation on ImageNet; these improvements allow us to reach an accuracy of 76.1%
(63.8%) on ImageNet (ImageNet-v2), on par with the standard supervised baseline
76.4% (63.8%) for ResNet-50. Further, background augmentations enable us to reach
a benchmark accuracy of 74.4%, outperforming Barlow Twins (Zbontar et al., 2021),
MoCo-v3 (Chen et al., 2021) and BYOL trained for 800-1000 epochs in only 100 epochs;
this result takes a large step forward in reducing the amount of training required for
competitive performance in SSL.

In the limited-label setting, we show the performance benefits are even larger, e.g. in the
1% (ImageNet) label setting, BG Swaps confers a 4.0% accuracy gain for MoCo-v2 and
in the 10% label setting BG Random enables BYOL to reach 72% accuracy using only
10% of ImageNet labels.

• Improved robustness. We find that background augmentations (especially BG Swaps)
lead to significantly improved robustness in many settings including ImageNet-9
(shift in foreground-background statistics), ImageNet-A (natural adversarial exam-
ples), ImageNet-R (ImageNet-Renditions), against adversarial attack, and ImageNet
ReaL.

• Scientific Insight. We investigate the impact of background augmentations in a) the
supervised setting and b) RotNet, and find that they do not confer a performance gain,
giving us insight into when and how background augmentations work. We also gain
further insight by shape-bias probing as well as by systematically perturbing the quality
of the augmentations.

• Improvement in saliency detection. In order to separate foregrounds and back-
grounds without any supervision, we also make progress in completely unsupervised
saliency detection, matching or outperforming weakly supervised as well as many
supervised methods.
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Figure 1: Schematic of Siamese SSL methods. A simplified schematic of the Siamese
SSL methods in our test bed. Dashed line in MoCo-v2 denotes enqueuing the positives k+

from the previous mini-batch (and dequeuing the oldest mini-batch).

2. Methods

2.1 Self-Supervised Learning Methods

We consider a diverse test bed of high performing self-supervised learning methods: MoCo-
v2 (Chen et al., 2020c), BYOL (Grill et al., 2020), and SwAV (Caron et al., 2020) to ensure
generality of our results. As in the respective original works, we use a standard ResNet-50
(He et al., 2016) as the default architecture in all experiments (SSL and supervised) unless
otherwise noted. A small subset of our experiments are based on RotNet(Gidaris et al.,
2018), using an AlexNet (Krizhevsky et al., 2012) architecture following the respective
original work. All reported numbers are based on our reproduction unless otherwise stated.
Where possible, we follow the protocol from the original works.

Here, we provide a brief overview of MoCo-v2, BYOL and SwAV and some implementation
details, with further details in Appendix A. We defer an overview of RotNet to Section 4.10
and relegate implementation details to Appendix A.

Overview. Broadly, each method uses a pair of Siamese networks (Bromley et al., 1994)—
i.e. weight-sharing neural networks, to encode differently augmented “views” of the same
image and maximize similarity between them, thereby encouraging the learning of “desirable”
invariances. Concretely, two views vs, vt of an image x are generated by sampling from a
random augmentation pipeline. The student network fθ is used to encode vs as zs = fθ(vs)
and similarly the teacher network1 fξ, is used to encode vt as zt = fξ(vt). Then, zs is used
to predict a target generated from zt; the specific form of this pretext prediction task varies
with the SSL method. Learning/“pre-training” is by optimization of the prediction loss over
θ.

MoCo-v2 is an instance of contrastive learning (Hadsell et al., 2006), a framework for
learning representations from data that are organized into similar/dissimilar pairs. The
prediction task in MoCo-v2 is one of instance discrimination: a differently augmented view
of the same image x needs to be discriminated from a set Q of “distractors”—views of
images different from x, in a (|Q|+ 1)-way classification. Two images form a similar/positive
pair if they are views of the same image and otherwise form a negative pair. MoCo-v2 uses

1. The weight-sharing between the student and teacher may be direct as ξ ← θ (as in SwAV) or indirect as
ξ ← mξ + (1−m)θ, where ξ is an exponential moving average of θ (as in MoCo-v2 and BYOL).
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the InfoNCE (Oord et al., 2018) loss for this task and instantiates Q as a queue comprised
of previous mini-batches of `2 normalized outputs from the teacher. The prediction is z̄s
and the target is z̄t, where z̄ = z/||z||2.

In the terminology of the original work, the prediction z̄s is called the query (denoted q),
the target z̄t is called the positive key (denoted k+) and the distractors (here elements of
Q) are known as negatives keys (denoted Q = {k−}). Thus, the loss encourages similarity
between q and k+ and dissimilarity between q and k−.

In BYOL, a prediction Multi-Layer Perceptron (MLP) qθ is used to generate the
prediction qθ(zs), the target is z̄t and the loss used is Mean Squared Error (MSE). In SwAV,
the target is generated by an online-clustering process and z̄s is used to predict the cluster
assignment of z̄t; the loss used is Cross-Entropy (CE). Thus, SwAV is a clustering-based
approach, while MoCo-v2 and BYOL are instance-based approaches. SwAV and BYOL are
not explicitly contrastive, since they do use negative instances.

All methods use 2 “global” views, while SwAV additionally uses L “local” views—low
resolution crops that cover only small parts of the image; by default L = 6. Using global and
local views is known as multi-crop augmentation. Local views are typically only used for
prediction and not used in generating the targets. Intuitively, since local views are expected
to be predictive of global views, models are discouraged from representing only the most
discriminative features for solving the pretext prediction task.

It is typical to use a projection MLP (Chen et al., 2020a) on top of a backbone network
and discard the projection MLP after pre-training (but see Chen et al. (2020b)). In our
notation, f subsumes the backbone g and the projection MLP h, i.e. f = h ◦ g. At the end
of pre-training, only the backbone gθ is kept. The outputs of gθ are called representations
and the corresponding outputs of h are called the embeddings/projections.

(Abuse of) Notation: For simplicity, we refer to the embedding from the student network
as the query q and the embedding from the teacher corresponding to the same image x as
the positive key k+, across all methods. We also use the terms student (teacher) and query
(key) network interchangeably.

Implementation. MoCo-v2 is trained using SGD and a larger (than the standard 256)
batch size of 1024 (distributed across 32 GPUs) with a 20 epoch linear warmup for 220
(800) epochs in the medium (full) setting. These settings were chosen to increase training
speed while matching the reported performance at a similar number of epochs in Chen et al.
(2020c).

BYOL and SwAV were trained using LARS (You et al., 2017) using a batch size of 4096,
distributed across 64 GPUs with synchronized batch normalization (Ioffe and Szegedy, 2015)
for groups of 8 GPUs. BYOL (SwAV) is trained for 300 (100) epochs in the medium setting
and 1000 (800) epochs in the full setting. See Appendix A for more details.

2.2 Background Augmentations

We apply all background augmentations (BG RM, BG Random, BG Swaps) after all other aug-
mentations in the respective augmentation pipeline. However, we note that we observed
similar results applying background augmentations before all other augmentations as well
(Appendix C.5). While we apply background augmentations to (views of) images, when
it is clear from context, we will refer instead to the corresponding embeddings q, k+, k−.
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Figure 2: Schematic of different types of background augmentations. BG RM (left)
replaces backgrounds with grayscale, effectively removing any background information.
BG Random (middle) replaces backgrounds with random backgrounds, creating a random
signal which is uncorrelated with the foreground. BG Swaps (right) exploits the structure of
contrastive learning to ensure that the query and the positive have the same foreground but
different backgrounds, while the query and one negative have matched backgrounds. As a
result, BG Swaps makes it so that models are penalized for focusing on the background.

Unless otherwise mentioned, background augmentations are applied independently with a
probability ppos to both q and k+ (the positive teaching pair). When a method has explicit
negative instances (MoCo-v2), we denote by pneg the probability of including a negative
whose background matches q; by default, this is independent of background augmentation
in q and k+. Values for ppos and pneg were optimized independently for each background
augmentation. When it is clear from context, we will sometimes drop the subscript. Note
that in MoCo-v2, k+ is placed in the queue Q for use in subsequent batches as a negative,
so that augmentations applied to k+, also indirectly apply to k− via Q. When multi-crop

augmentation is used (as in SwAV), we apply background augmentations only to the global
views. Background augmentations are only applied during self-supervised pre-training and
are not applied when training linear classification layers for evaluation. Below, we describe
the details of each of the background augmentations we study.

In BG RM, the background of an image is removed by using a foreground mask (obtained
using a saliency detector, see Section 3), and replaced with a solid grayscale background
whose intensity is drawn uniformly from [0, 1], though we note that a solid black background
produced similar results. See illustrative examples in Figure 2, left column.

In BG Random, we replace the background with a background from a different image in
the same batch. As in Xiao et al. (2021a), tiled backgrounds corresponding to an image are
generated by filling in the foreground information using the surrounding background.

In BG Swaps, we generate a negative image with a background matched to that of the
query q. In practice, we create a background matched negative as mqr + (1−mq)q, where
mq is the binary foreground mask of the query q and r is a random image. We generate
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all foreground masks and tiled backgrounds offline and cache them to increase throughput
at train time. Note that foreground masks may include multiple foreground objects when
they are present (e.g. last row of Figure 3 or Figure A7). Substantial noise is tolerable in
the quality of the foreground masks (see Appendix B). More generally, there is substantial
flexibility and tolerance in instantiating the main ingredients of background augmentations,
which we expand on in Appendix C.

2.3 Supervised Training

We largely follow the protocol from Goyal et al. (2018), unless otherwise indicated. We train
all supervised models (with or without background augmentation) with a batch size of 4096
with a 5 epoch linear warmup due to the large batchsize. Models are trained for 90 epochs,
with a step schedule (30, 60, 80) and a decay factor of 0.1, using SGD with a base learning
rate of 0.1 scaled linearly (lr=BatchSize/256×0.1) and momentum of 0.9, and the standard
augmentations RandomResizedCrop and RandomHorizontalFlip. We also exclude bias and
batch normalization parameters from weight decay, which was set to 1 × 10−4. The γ in
each residual block’s last BatchNorm layer is zero initialized. Our supervised baseline for
ResNet-50 reaches the standard baseline (Goyal et al., 2018) performance of ∼76.4% Top-1
accuracy on ImageNet (Russakovsky et al., 2015).

3. Saliency Detection

We use saliency detection to generate the foreground masks used in background augmentations
(see methods, Section 2.2). However, state-of-the-art saliency detection methods (e.g. U2Net,
Qin et al. (2020)) are generally reliant on manually annotated, accurate pixel-level Ground
Truth (GT) saliency labels for training, making their usage inappropriate in a truly self-
supervised benchmark.

3.1 Weakly Supervised Saliency Detection

Recent “unsupervised” saliency detection methods (Nguyen et al., 2019; Zhang et al., 2018b,
2017a) demonstrate promising results by leveraging psuedo-labels generated by hand-crafted
saliency methods in lieu of manually annotated GT saliency labels. Briefly, noisy psuedo-
labels generated by hand-crafted saliency methods are iteratively refined by using them as
targets to train a Fully Convolutional Network (FCN) for saliency detection, and obtaining
refined pseudo-labels from the denoised predictions. Refined pseudo-labels from multiple
hand-crafted methods are then jointly used to train a re-initialized FCN to obtain the final
saliency detector. While these methods are “unsupervised” in that they do not use manually
annotated saliency labels, their success implicitly relies on human annotation—the FCN
used is pre-trained in a supervised manner using ImageNet class and CityScapes (Cordts
et al., 2016) segmentation labels. Indeed, we find that if we use a randomly initialized FCN
instead, the resulting saliency predictions are worse than the noisy psuedo-labels used as
targets. As such, these methods are also not appropriate to generate foreground masks for
our purpose; we thus refer to these methods as weakly supervised methods in this context.

7
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Image Ground Truth DeepUSPS DeepUSPS2

Figure 3: Examples of saliency masks generated by DeepUSPS2.

3.2 Unsupervised Saliency Detection: DeepUSPS2

In order to train a completely unsupervised saliency detector, we build upon DeepUSPS
(Nguyen et al., 2019), a recent state-of-the-art weakly supervised saliency detection method.
We first pre-train a DRN-D-105 (Yu et al., 2017) network in a self-supervised manner for
500 epochs on ImageNet, using BYOL. We then use this pre-trained network to refine
pseudo-labels and train a saliency detector, which we call DeepUSPS2, employing a training
protocol modified from DeepUSPS (see Appendix A.2); some example saliency predictions
are shown in Figure 3. Training images were 2500 images from the MSRA-B data set (Liu
et al., 2011).

We find that DeepUSPS2 performs better than or on par with DeepUSPS and other
recent state-of-the-art weakly supervised and even some supervised saliency detectors on
common saliency benchmark data sets MSRA-B, ECSSD (Yan et al., 2013), and DUT (Yan
et al., 2013), yet DeepUSPS2 does not rely on any human annotation at any stage in the
pipeline, see Table 1. For each data set, following common protocol (Nguyen et al., 2019;
Achanta et al., 2009), we report the F-score,

Fβ =
(1 + β2)× precision× recall

β2 × precision + recall
,

where β2 = 0.3 to weigh precision more than recall and the MAE (Mean Absolute Error) on
the test split.

We use DeepUSPS2 as the default saliency detector to generate foreground masks in
our experiments unless otherwise indicated. To ablate the method of mask generation and
for control experiments, we also use U2Net (Qin et al., 2020), a state-of-the-art saliency
detector that is trained in a supervised manner on DUTS-TR (Wang et al., 2017a), which
contains 10553 pixel-level manual saliency annotations.

8



Background Augmentations for Self-Supervised Learning

Method MSRA-B ECSSD DUT

F↑ MAE↓ F↑ MAE↓ F↑ MAE↓
Supervised

(GT saliency labels used for training.)

Hou et al. (2017) 89.4 4.7 88.0 7.0 72.9 7.6
Luo et al. (2017) 89.7 4.8 89.1 6.6 73.6 8.0
Zhang et al. (2017b) - - 88.3 6.1 69.3 9.8
Zhang et al. (2017c) - - 85.2 8.0 66.0 13.2
Wang et al. (2017b) 85.1 6.7 82.6 9.2 67.2 8.5
Li et al. (2016) - - 75.9 16.0 60.5 7.6
Wang et al. (2016) - - 84.3 9.7 69.2 9.5

Weakly Supervised
(Class labels used in pre-trained backbone, GT saliency labels not used in training.)

SBF (Zhang et al., 2017a) - - 78.7 8.5 58.3 13.5
USD (Zhang et al., 2018b) 87.7 5.6 87.8 7.0 71.6 8.6
DeepUSPS 90.3 4.0 87.4 6.3 73.6 6.3
DeepUSPS (repro.) 90.5±0.1 3.9±0.0 87.9±0.1 6.3±0.0 72.1±0.2 6.8±0.1

Completely Unsupervised
(No human annotation at any stage in the pipeline.)

DeepUSPS2 (ours) 91.3±0.0 3.6±0.0 90.0±0.0 5.4±0.0 71.1±0.0 6.9±0.0

Table 1: DeepUSPS2 is on par with or outperforms weakly supervised saliency
methods and several recent supervised saliency methods. We report performance
across 5 independent runs for DeepUSPS2 (and also for DeepUSPS (repro.)). Notation:
Mean±SEM (Standard Error of the Mean). Best results are in bold.

4. Representation Learning with Background Augmentations

4.1 Do Background Augmentations that Encourage Semantic Focus Increase
Performance?

Deep neural networks often rely on non-semantic, superficial features and thus may be easily
misled by backgrounds. Nonetheless, these non-semantic features are often predictive at
test time (Xiao et al., 2021a; Sehwag et al., 2020; Ilyas et al., 2019), so it is not a priori
obvious whether background augmentations that encourage semantic focus on the foreground
will benefit performance. We investigate this question by exploring the space of possible
background augmentations. First, we study removing backgrounds probabilistically, where
the strength of the augmentation is controlled by a parameter p, which sets the probability
that the background is removed from the query or positive key. See Figure 2, left for an
example of the BG RM setting.

Across SSL methods, we find that BG RM substantially improves linear classification on
ImageNet, improving performance by ∼0.6-1.4% (Table 2). For all methods, we found that
a moderate value of p between 0.1 and 0.3 is generally a good setting. However, despite its

9
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Method Epochs ImageNet acc.
Original ReaL

Supervised 90 76.4 82.7

PCL-v2 (Li et al., 2021b) 200 67.6 -
CMC (Tian et al., 2020a) 200 66.2 -
SimCLR 200 66.8 -
MoCo 200 60.6 -
SeLa (Asano et al., 2020) 400 61.5 -
MoCo-v2 200 67.5 -
MoCo-v2 (repro.) 220 67.7 74.7
MoCo-v2 + BG RM 220 69.1±0.0 (+1.4) 76.2±0.0 (+1.5)
MoCo-v2 + BG Swapsa 220 69.5±0.1 (+1.8) 76.6±0.1 (+1.9)
DiLo (MoCo-v2) (Zhao et al., 2021) 200 67.9 (+0.2) -
BYOL 300 72.5 -
BYOL (repro.) 300 72.7 79.6
BYOL + BG RM 300 73.3±0.2 (+0.6) 80.4±0.3 (+0.8)
BYOL + BG Random 300 73.9±0.1 (+1.2) 81.0±0.0 (+1.4)
SwAV 100 72.1 -
SwAV (repro.) 100 72.2 79.1
SwAV + BG RM 100 73.6±0.1 (+1.4) 80.6±0.1 (+1.5)
SwAV + BG Random 100 73.4±0.0 (+1.2) 80.4±0.1 (+1.3)

Longer Training
PIRL (Misra and van der Maaten, 2020) 800 63.6 -
SimCLR 1000 69.3 -
Barlow Twins (Zbontar et al., 2021) 1000 73.2 -
MoCo-v2 800 71.1 -
MoCo-v2 (repro.) 800 71.0 78.0
MoCo-v2 + BG RM 800 71.9 (+0.9) 78.9 (+0.9)
MoCo-v2 + BG Swaps 800 72.2 (+1.2) 79.2 (+1.2)
BYOL 1000 74.3 -
BYOL (repro.) 1000 73.8 80.5
BYOL + BG RM 1000 74.6 (+0.8) 81.3 (+0.8)
BYOL + BG Random 1000 74.8 (+1.0) 81.7 (+1.2)
SwAV 800 75.3 -
SwAV (repro.) 800 74.9 81.4
SwAV + BG RM 800 76.1 (+1.2) 82.5 (+1.1)
SwAV + BG Random 800 76.1 (+1.2) 82.6 (+1.2)

Table 2: Background augmentations confer large performance benefits in linear
evaluation on ImageNet across a spectrum of SSL methods using the original
or reassessed labels. For shorter training, we report metrics averaged over 3 independent
runs, reflecting robust improvements. Number of training epochs are chosen to be consistent
with previously published results. We highlight performance gains due to background
augmentations relative to our reproductions, but also include published baseline numbers for
comparison. Notation: Mean±SEM (Standard Error of the Mean). Best results are in bold.

a. We show BG Swaps > BG Random for MoCo-v2, see section 4.3. BG Swaps does not apply to BYOL and
SwAV as they do not use negative instances. 10
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Method BG aug. in ImageNet acc.

q k+ k−

(a) baseline 67.7
Control Experiments

(b) BG RM X 67.8
(c) BG Random X 68.3
“Full” Augmentations

(d) BG RM X X X 69.3
(e) BG Random X X 69.1

Table 3: BG RM vs. BG Random. Comparing BG RM and BG Random in MoCo-v2 controlling
for presence of negatives in the queue with similar background.

improved performance, because BG RM introduces images with solid gray backgrounds, it
induces a distribution shift between the unsupervised pre-training phase and the supervised
downstream tasks which may limit performance improvements. Note that DiLo (MoCo-v2)
is similar to BG RM applied MoCo-v2, but results only in a small gain of +0.2, while we
obtain a 7× larger gain (and as we will show later, a 9× gain by developing an improved
background augmentation method BG Swaps).

4.2 Can we make Background Augmentations more In-Distribution?

In the previous section, we explored removing backgrounds and replacing them with uni-
form grayscale, which results in the data being out-of-distribution (OOD) relative to the
downstream tasks. To mitigate this OOD issue, we instead replace backgrounds with a
randomly chosen background from another instance in the same batch. We term this
method BG Random (Figure 2, middle). Interestingly, despite the fact that BG Random is
more in-distribution than BG RM, we found that performance was similar (e.g. 69.1% for
BG RM (Table 2) vs. 69.2% for BG Random (Table A6) with MoCo-v2). However, we note
that these two settings are not necessarily directly comparable. For example, in the case of
MoCo-v2, augmented positive keys are added to the queue to be used as negatives for subse-
quent mini-batches. As a result, BG RM might actually penalize background focus whereas
BG Random may simply result in an uninformative background. This is because BG RM features
a constant gray background which can be matched between the query and negatives that
were used as positive keys in a previous mini-batch, whereas BG Random features distinct
backgrounds for each augmented image.

It is therefore unclear whether the similar performance of BG RM and BG Random stems
from distributional shift or the matched gray backgrounds which can serve to make negatives
more challenging. To disentangle these two factors, we performed a control experiment in
which background augmented images were only included for the query (with p = 0.1)—and
thus not used in subsequent mini-batches as the positive or the negative. This setting
maintains the distribution shift of BG RM, but removes the possibility of a teaching signal
originating from matched gray backgrounds across the query and negative. To minimize

11
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Method BG aug. in ImageNet acc.

q k+ k−

(a) baseline 67.7
(b) X 68.3
(c) X 68.2
(d) BG Random X X 69.1
(e) BG Swaps X X X 69.7

Table 4: Ablations of BG Swaps for MoCo-v2. Each component confers a performance
improvement and the improvements stack on top of each other.

confound stemming from mask quality, we use higher quality foreground masks generated by
U2Net, a state-of-the-art saliency detector trained with supervision instead of DeepUSPS2.

This control reveals that, when only applied to the query but not the positive or
negative, BG RM has similar performance (Table 3b) as no BG RM (Table 3a), suggesting that
BG RM benefits substantially from the teaching signal of negatives with matching (constant)
backgrounds. In contrast, we found that, when only present in the query, BG Random still
improves performance (Table 3c), but the improvement is decreased suggesting that having
augmented images with randomized backgrounds in the positive keys provides additional
benefit (Table 3e); here, for an apples-to-apples comparison with the control experiments (or
“partial” augmentations), we also report performance for the “full” augmentations (Table 3d,
e) using U2Net masks and the same augmentation strength.

These analyses demonstrate both the importance of using background augmentations
which remain close to the unaugmented input distribution and highlight the potential for
methods which provide an additional teaching signal via negatives with query-matched
backgrounds. Inspired by these results, we next investigate how to combine these approaches.

4.3 Exploiting the Structure of Contrastive Instance Discrimination via
Background Matched Negatives

Thus far, we have explored two background augmentations—BG RM and BG Random—both of
which operate independently on the query and the positive and encourage semantic focus on
foregrounds by simply removing backgrounds altogether or replacing them with randomized
backgrounds so there’s no effective signal in the background. This removes the incentive
for models to focus on background information, but does nothing to directly penalize focus
on backgrounds. However, contrastive instance discrimination (CID) methods (e.g., MoCo,
SimCLR), use the query to discriminate between the positive and negative instances and
thus feature structure that we can exploit to not only remove signal from backgrounds, but
go further and provide explicitly misleading signal in the backgrounds. Note that BYOL
and SwAV are not CID methods, since they do not use negative instances.

We accomplish this through two modifications with a method we call BG Swaps (Figure
2, right). First, as in BG Random, we ensure that the query and the positive feature distinct
random backgrounds. Models which focus on backgrounds would therefore place the positive
and query further apart than they should since the semantic content is identical, but the
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background features differ. Second, we modify the negative set to include one additional
negative2 whose background matches the query: a network which focuses on backgrounds
would view the background-matched negative as highly similar to the query and receive
strong negative supervision. As with BG RM and BG Random, we introduce the background-
matched negative with probability pneg (and include a randomly selected negative with
probability 1− pneg, so that the total number of negatives is always |Q|+ 1).

These background matched negatives can be considered an example of “hard negatives”,
which have been explored recently in the context of SSL to improve learning (Kalantidis
et al., 2020; Wu et al., 2021; Robinson et al., 2021; Cai et al., 2020). In this vein, one could
consider the positive pair (q and k+) with different backgrounds as “hard positives”. For
MoCo-v2, including a background matched negative further increases performance over
BG RM by an additional 0.4% (Table 2). Consistent with our previous findings, we also found
that it is important for the statistics of the augmentations to be similar for the positive
and the negatives in order to achieve the best performance. In general, we found that the
probability of an augmentation in the query and positive, ppos, matching the probability of
an augmentation in the negative, pneg, so that ppos'pneg, gives good performance.

4.4 Ablating BG Swaps

To characterize which components of the BG Swaps augmentation matter and how much,
we perform systematic ablations. As shown in Table 4, we found that each independent
component of BG Swaps leads to a performance improvement (in contrast with BG RM).
In particular, we find benefits when employing each of the following: BG Random in the
query (p = 0.1); BG Random in the positive key (p = 0.1); background matched negative
(p = 0.2). Notably, the improvements from randomized backgrounds in q and k+ stack
superlinearly (Table 4d), suggesting that incorporating both of these augmentations provides
a greater advantage due to their interaction than either does independently; using background
matched negatives further improves performance substantially (Table 4e). As in the control
experiments in Section 4.2, to minimize confound stemming from mask quality, we use higher
quality foreground masks generated by U2Net for these ablations.

There is significant design flexibility in how one could implement BG Swaps. For example,
is it a better teaching signal to have independent or correlated background augmentations
in the query/positive and the negatives? Is it better to have a negative whose background
matches the query or the positive? We find that BG Swaps is robust to these specific choices
(Appendix C), making it a promising candidate for more general deployment in augmentation
pipelines.

4.5 Effect of Longer Training

We also evaluate the impact of background augmentations on longer training ranging from
800 to 1000 epochs (Table 2). As with the shorter training, we found that background
augmentations consistently increased performance across models, e.g. enabling SwAV to
reach 76.1% with a ResNet-50 on ImageNet, only 0.3% less than the standard supervised
baseline. Interestingly, however, we found that the magnitude of the improvement decreased

2. We explored using multiple background matched negatives, but found no improvement over a single
matched negative. See Appendix C for details.
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SwAV w/ wider MLP (4096/256)

Epochs baseline BG RM BG Random

100 72.6 74.1 74.1
800 75.0 76.1 76.1

augmentation strength (p)

BG_RM BG_Random

Figure 4: Wider projection MLP and warmup alleviates early optimization dif-
ficulty. (left) Wider projection MLP alleviates early optimization difficulty, improving
performance and removes the gap between BG RM and BG Random. Augmentation strength:
p = 0.25. (right) The gap between BG RM and BG Random increases with stronger augmenta-
tion with the default (black dashed lines) MLP capacity. In addition to increasing MLP
capacity, warming up background augmentations further adds stability across a range of
augmentation strengths. Notation: (MLP width/output dimension).

slightly in the longer training runs, which may be a saturation effect but also raises the
more interesting possibility that SSL models initially learn representations that depend on
backgrounds, but eventually learn some background invariance when trained for long enough.
However, we later discuss (Section 5.1) evidence that does not find support for the latter
possibility.

4.6 Diagnosing and Improving SwAV + Background Augmentations

As previously discussed, due to BG RM being OOD, we might generally expect BG Random,
BG Swaps to be on par or better than BG RM. Our results in Table 2 show that while this is
generally true across SSL methods and training durations, BG RM > BG Random for SwAV
trained for a short duration. Since BG RM and BG Random result in the same final accuracy
upon longer training (Table 2), we hypothesized that there maybe early optimization difficulty
arising from an interaction between SwAV’s objective function and attempting to learning
invariance to random natural backgrounds (in contrast with solid grayscale backgrounds in
BG RM), at a stage in the pre-training when the representations are still quite poor. Consistent
with this hypothesis, when BG Random is used, the loss lingers at chance early in pre-training,
while the corresponding loss for BG RM falls rapidly. We reasoned that further increasing
the augmentation strength of BG Random should result in higher optimization difficulty and
consequently, worse performance. Consistent with this expectation, the performance of
BG Random rapidly declines past a point, while the performance of BG RM remains stable, see
Figure 4 (right, black dashed lines).

To alleviate this issue, we propose two solutions: a) increasing the projection MLP
capacity and b) warming up background augmentations. We show results from (a) in Figure
4 (left, Table), finding both improved performance (a baseline effect) and removing the
gap between BG RM and BG Random. Note that the default projection MLP capacity for
SwAV is 2048/128. We report the results of (a) and (b) across a range of augmentation
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strengths in Figure 4 (right) 3. In addition to increasing MLP capacity, warming up
BG Random further stabilizes performance when stronger augmentation is used. More broadly,
these analyses show that additional factors such as ease of optimization play an important
role in determining performance apart from whether an augmentation induces a distribution
shift.

Our analyses here have broader implications. For instance, they shed new light on the
role of the projection MLP and may help explain recent puzzling findings in literature;
specifically, Zbontar et al. (2021) observed that their method, Barlow Twins, works best for
large dimensionality of the projection MLP and noted that “This result is quite surprising
because the output...acts as a dimensionality bottleneck in our model and sets the limit of
the intrinsic dimensionality of the representation”. Our analyses suggest that it is important
for the projection MLP to be of appropriate capacity for the pretext prediction task—more
“difficult” (e.g. due to stronger augmentation) prediction losses may benefit from a higher
capacity MLP.

One important limitation of current SSL methods is the long training required for
competitive performance, typically 800-1000 epochs, in contrast with supervised learning.
Our results in Figure 4 (left) show that background augmentations enable a step forward
in reducing the amount of training required for competitive performance in SSL. In these
results, aside from diagnosing and fixing early optimization issues, we simply used the default
settings for SwAV. However, there remains much room for improvement in conjunction with
background augmentations. We briefly explore one such improvement here.

Recall that SwAV uses multi-crop augmentation, where local crops covering small parts
of the image are expected to be predictive of global crops. Here, we increase the area that
the small crops may cover of the full image 4. While the small crops may feature more of the
background with this change, background augmentations already prevent excessive focus on
the background. This simple change improves the performance of BG RM (BG Random) from
74.1% to 74.4% (74.2%). In only 100 epochs, performance exceeds many recent high
performing SSL methods trained for 800-1000 epochs, e.g. Barlow Twins (73.2%, 1000
epochs), MoCo-v3 (Chen et al., 2021) (73.8%, 800 epochs) and BYOL (74.3%, 1000 epochs).
In contrast, with the same change, the SwAV baseline fails to train and the loss at the end
of pre-training is at chance. Note that our default setting for SwAV does not include the
modifications discussed in this section unless otherwise indicated.

4.7 What is the Impact of Mask Quality?

While DeepUSPS2 is better than or on par with weakly supervised saliency methods and
even some recent supervised saliency methods, state-of-the-art supervised saliency methods
like U2Net achieve better performance on saliency benchmarks. We perform an ablation
using foreground masks generated by U2Net for background augmentations. While the
resulting models are not truly self supervised, they can nevertheless help us understand if
using better foreground masks can lead to larger performance improvements. We report

3. In setting of default MLP capacity (dashed lines), masks from U2Net were used to control for influence of
mask quality.

4. Since we maintain the same resolution of 96×96 for the smaller crops as in the default setting and
simply modify the max scale in RandomResizedCrop, compute and memory requirements stay identical.
Additional details in Appendix C.
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Method Saliency ImageNet acc.
Method Original ReaL

Top-1 Top-5 Top-1 Top-5

MoCo-v2 (220) 67.7 88.1 74.7 91.7

+ BG RM
DeepUSPS2 69.1±0.0 (+1.4) 88.8±0.0 76.2±0.0 (+1.5) 92.3±0.1

U2Net 69.3±0.1 (+1.6) 88.6±0.1 76.3±0.1 (+1.6) 92.3±0.1

+ BG Swaps
DeepUSPS2 69.5±0.1 (+1.8) 88.9±0.0 76.6±0.1 (+1.9) 92.4±0.1

U2Net 69.7±0.1 (+2.0) 88.9±0.0 76.8±0.1 (+2.1) 92.3±0.1

BYOL (300) 72.7 90.9 79.6 94.0

+ BG RM
DeepUSPS2 73.3±0.2 (+0.6) 91.1±0.1 80.4±0.3 (+0.8) 94.3±0.1

U2Net 73.5±0.1 (+0.8) 91.2±0.1 80.5±0.1 (+0.9) 94.4±0.0

+ BG Random
DeepUSPS2 73.9±0.1 (+1.2) 91.6±0.0 81.0±0.0 (+1.4) 94.6±0.0

U2Net 73.8±0.0 (+1.1) 91.7±0.0 81.0±0.1 (+1.4) 94.7±0.0

SwAV (100) 72.2 91.0 79.1 94.0

+ BG RM
DeepUSPS2 73.6±0.1 (+1.4) 91.6±0.0 80.6±0.1 (+1.5) 94.6±0.0

U2Net 73.7±0.1 (+1.5) 91.6±0.0 80.7±0.1 (+1.6) 94.6±0.0

+ BG Random
DeepUSPS2 73.4±0.0 (+1.2) 91.6±0.0 80.4±0.1 (+1.3) 94.6±0.0

U2Net 73.5±0.1 (+1.3) 91.6±0.0 80.5±0.1 (+1.4) 94.6±0.0

Longer Training

MoCo-v2 (800) 71.0 90.3 78.0 93.4

+ BG RM
DeepUSPS2 71.9 (+0.9) 90.4 78.9 (+0.9) 93.5

U2Net 72.0 (+1.0) 90.4 79.0 (+1.0) 93.6

+ BG Swaps
DeepUSPS2 72.2 (+1.2) 90.4 79.2 (+1.2) 93.6

U2Net 72.2 (+1.2) 90.5 79.0 (+1.0) 93.5

BYOL (1000) 73.8 91.5 80.5 94.3

+ BG RM
DeepUSPS2 74.6 (+0.8) 91.8 81.3 (+0.8) 94.7

U2Net 74.7 (+0.9) 91.9 81.5 (+1.0) 94.7

+ BG Random
DeepUSPS2 74.8 (+1.0) 92.0 81.7 (+1.2) 94.8

U2Net 74.8 (+1.0) 92.1 81.6 (+1.1) 94.8

SwAV (800) 74.9 92.1 81.4 95.1

+ BG RM
DeepUSPS2 76.1 (+1.2) 92.8 82.5 (+1.1) 95.4

U2Net 76.2 (+1.3) 92.8 82.6 (+1.2) 95.4

+ BG Random
DeepUSPS2 76.1 (+1.2) 92.9 82.6 (+1.2) 95.5

U2Net 76.0 (+1.1) 92.9 82.6 (+1.2) 95.5

Table 5: Ablating the impact of the saliency method used for foreground ex-
traction. We find nearly identical performance when we use U2Net, a state-of-the art
saliency detector that is trained with supervision. Foreground extraction using higher quality
masks results in slightly better performance when trained for fewer epochs, but this benefit
disappears with longer training. All numbers are based on our implementation. Notation:
MoCo-v2 (800) indicates that MoCo-v2 was trained for 800 epochs.
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the results of these experiments in Table 5, finding that performance is nearly identical
whether DeepUSPS2 or U2Net are used to extract foreground masks. Using higher quality
masks leads to slightly better performance when trained for fewer epochs but this gap
disappears with longer training. In later sections, we evaluate both sets of models on a range
of downstream tasks to gain further insight.

While these results suggest that there may be diminishing gains to using higher quality
masks, some natural questions arise, e.g. which SSL methods and background augmentations
are more robust to mask quality? How does performance vary as a function of mask quality?
We systematically perturb mask quality in numerous ways (via mask rotation, shearing,
translation, flips and replacing masks with bounding-box masks) to answer these questions in
Appendix B. Overall, we find that there is substantial robustness to mask quality. Of the SSL
methods and background augmentations considered, we find that SwAV and BG Swaps are
particularly robust.

4.8 Limited-Label Setting

While linear evaluation using 100% of ImageNet labels is a standard evaluation metric, it
is also somewhat impractical due to the large amount of labels involved - after all, one of
the more important goals of SSL is good performance when labeled data is highly limited.
Linear evaluation in limited label settings reveals a large improvement in performance from
background augmentations. For 1% and 10% labels, we use the same fixed splits of ImageNet
labeled training data as in Chen et al. (2020b). We similarly find large performance benefits
in semi-supervised evaluation (fine-tuning the pre-trained backbone in addition to learning
a linear classifier). We report Top-1 and Top-5 accuracies in Table 6.

Our first key finding is that the improvement in performance in limited label settings,
for both linear and semi-supervised evaluation, is substantially larger than in 100% linear
evaluation, with improvements up to 4.2%. Large gains in linear evaluation especially reflect
a much better learned representation, since the backbone is frozen. Our second key finding
is that BG Swaps is especially effective in limited label settings. Indeed, in the 1% setting,
the gain from BG Swaps is nearly 3× the gain from BG RM in semi-supervised evaluation and
∼ 2× that of BG RM in linear evaluation, demonstrating the effectiveness of using negatives
matched to the query’s background.

Our third finding is that it is generally better to use BG Random or BG Swaps over BG RM,
consistent with our previous results. Our findings here set new, stronger baselines: 60.9%
Top-1 in the 1% labels setting and 72% Top-1 in the 10% labels setting. It is worth noting
that ∼71% is the linear evaluation baseline for MoCo-v2 using 100% of the labels. Note that
our reproduction of BYOL’s performance in limited label settings already improves upon
the published baseline (by +4.1%, +1.8% in the 1% and 10% labels settings respectively)
by adopting a much smaller learning rate for the pre-trained backbone than the classifier
head—background augmentations further improve on these stronger baselines.

Finally, we note that nearly identical findings hold when we instead use U2Net for
foreground extraction, see Table A13. All models receive full pre-training.
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Method 1% Labels 10% Labels

Top-1 Top-5 Top-1 Top-5

Supervised (Zhai et al., 2019) 25.4 48.4 56.4 80.4

L
in

ea
r

MoCo-v2 (repro.) 52.0 77.7 63.9 85.8
MoCo-v2 + BG RM 54.1 (+2.1) 78.6 65.1 (+1.2) 86.2
MoCo-v2 + BG Swaps 56.0 (+4.0) 79.5 65.9 (+2.0) 86.4

BYOL (repro.) 57.5 80.8 68.6 88.6
BYOL + BG RM 60.1 (+2.6) 82.7 70.1 (+1.5) 89.2
BYOL + BG Random 60.9 (+3.4) 83.3 70.4 (+1.8) 89.5

SwAV (repro.) 52.8 78.4 68.3 88.7
SwAV + BG RM 57.0 (+4.2) 81.3 70.4 (+2.1) 89.8
SwAV + BG Random 56.4 (+3.6) 81.1 70.2 (+1.9) 89.7

F
in

et
u

n
e

MoCo-v2 (repro.) 54.1 81.3 67.6 89.4
MoCo-v2 + BG RM 55.2 (+1.1) 81.3 67.8 (+0.2) 89.2
MoCo-v2 + BG Swaps 57.3 (+3.2) 82.4 68.7 (+1.1) 89.5

BYOL (repro.) 57.3 80.5 70.6 90.0
BYOL + BG RM 59.9 (+2.6) 82.4 71.7 (+1.1) 90.5
BYOL + BG Random 60.7 (+3.4) 82.8 72.0 (+1.4) 90.7

SwAV (repro.) 54.0 78.5 70.1 89.9
SwAV + BG RM 55.2 (+1.2) 79.4 70.8 (+0.7) 90.2
SwAV + BG Random 55.9 (+1.9) 79.4 71.1 (+1.0) 90.4

Published Baselines

PIRL - 57.2 - 83.8
SimCLR 48.3 75.5 65.6 87.8
SwAV 53.9 78.5 70.2 89.9
BYOL 53.2 78.4 68.8 89.0
Barlow Twins 55.0 79.2 69.7 89.3

Table 6: Limited-Labels Setting. Background augmentations improve performance in the
limited-labels setting. Linear evaluation using 100% of ImageNet labels though a standard
benchmark, is a somewhat unrealistic setting. Evaluation in the more practical setting of
limited-labels reveals even larger improvement in performance. We highlight performance
gains due to background augmentations. Best (second best) results are in bold (underlined).
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baseline (p = 0.0): 76.4 p = 0.1 p = 0.2 p = 0.3 p = 0.5

BG RM 76.6 76.5 76.4 75.9
BG RM + retrain classifier 76.5 76.3 76.0 75.1
BG RM + finetune 76.5 76.6 76.5 76.0

BG Random 76.4 76.6 76.6 76.0
BG Random + retrain classifier 76.4 76.2 75.9 73.5
BG Random + finetune 76.6 76.6 76.6 76.4

Table 7: Supervised Setting: Background augmentations do not improve over the baseline
(76.4 in our setting).

Method Epochs Accuracy

Supervised baseline 90 76.4

Supervised + BG RM 90 76.5
Supervised + BG RM 300 76.5
Supervised + BG Random 90 76.6
Supervised + BG Random 300 76.6

Table 8: Supervised Setting: Longer Training. Longer training with background
augmentation does not significantly improve performance in the supervised setting over the
baseline. Augmentation strength: p = 0.2.

4.9 Can Background Augmentations Improve Performance in the Supervised
Setting?

We have found that background augmentations provide a significant performance boost
to a suite of high-performing SSL methods, and shrink the gap to the supervised baseline
down to 0.3%. We note that most SSL methods utilize an augmentation suite that is
inherited from supervised training. By designing augmentations specifically for SSL, we
were able to induce a substantial increase in performance; this raises the question of whether
a similar performance boost would be observed when applying background augmentations
to supervised training.

Interestingly, we find that background augmentations do not confer a performance benefit
in the supervised setting. In Table 7, we report the performance of BG RM and BG Random,
sweeping over p, finding no setting that outperforms the supervised benchmark5.

One may wonder if this lack of improvement is an artifact of the evaluation protocol,
which is different from the SSL setting, where evaluation is either by training a linear
classifier on top of the frozen trunk or by fine-tuning the whole network (trunk + linear
classifier) without background augmentations. We therefore, a) re-train a linear classifier
without background augmentations on top of the frozen trunk (of the supervised network
trained with background augmentations) and (separately) b) fine-tune the whole network
without background augmentations, once again finding no performance benefit.

5. Note that BG Swaps is not applicable here since there is no concept of a negative to match.
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baseline (p = 0.0): 36.1 p = 0.1 p = 0.2 p = 0.3 p = 0.5

BG RM 36.0 35.5 35.5 34.8
BG Random 36.1 36.0 35.9 35.7

Table 9: RotNet: Background augmentations do not improve over the baseline.

In the supervised setting, strong augmentations may require much longer training to
be effective (e.g. as in the case of CutMix (Yun et al., 2019)). To account for a similar
possibility in the case of background augmentations, we include background augmentations
in supervised training and follow a much longer training schedule (see Appendix A for
details) for 300 epochs (following CutMix) and find no significant performance benefits, see
Table 8.

4.10 So, When do Background Augmentations Help?

Our results in the previous section suggest that the utility of background augmentations in
SSL does not generalize to the supervised setting. Given the importance of augmentations
to SSL (e.g., Chen et al. (2020a)), these results highlight the need to evaluate and explore
augmentations tailor-made for the SSL setting and are consistent with similar findings
(Chen et al., 2020a) for color distortion and blur augmentations. While the test bed of high
performing SSL methods we have considered thus far is diverse, they share a commonality:
they all use Siamese networks to compare or contrast views of images, raising the natural
question of whether this is the only SSL setting where background augmentations confer an
advantage.

To investigate this question, we turn to RotNet (Gidaris et al., 2018)—a simple, yet
surprisingly effective SSL method that is not based on a Siamese architecture nor on compar-
isons between images. Training a RotNet involves augmenting the data with rotated images
and training a network to categorize the orientation of an image, thereby forcing the network
to learn a meaningful representation to accomplish this task. We implemented background
augmentations in RotNet, i.e. we either perform BG RM or BG Random followed by rotating
the image (and training the network to classify the orientation). Interestingly, we found that
background augmentations confer no performance benefits, see Table 9. Here, BG Random and
BG RM decorrelate the foreground and the background, while BG RM additionally reduces the
incentive to encode background information, since a grayscale background is not informative
for the pretext task of categorizing image orientation. Thus, merely decorrelating the
foreground and background or disincentivizing focus on the background are not sufficient to
improve semantic focus.

Based on our findings, we speculate that background augmentations are most helpful
when there is a similarity comparison between images, and can help prevent the model from
using the background as a shortcut to place images nearby (or far away) in embedding space
which can hinder learning about the semantic content present in an image.
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Figure 5: Examples of variations of ImageNet-9. Also shown are classification decisions
from the supervised baseline. Image from Xiao et al. (2021a).

5. Generality of Representations Induced by Background Augmentations

If background augmentations lead to increased focus on semantic content and decreased focus
on non-robust predictors for classification (e.g., Ilyas et al. (2019)), we expect that these aug-
mentations would also lead to improved performance on out-of-distribution downstream tasks.
In particular, we expect gains on those tasks which have proven especially challenging for
supervised networks. Here, we discuss several such tasks, including ImageNet-9 (Xiao et al.,
2021a), adversarial attacks (Goodfellow et al., 2015; Kurakin et al., 2016; Madry et al., 2018),
natural adversarial examples (Hendrycks et al., 2019b), ImageNet-Renditions (Hendrycks
et al., 2021) and ReaL ImageNet (Beyer et al., 2020), finding improved performance across
the board.

5.1 Improved Robustness to Shift in Foreground-Background Statistics

ImageNet-9 (IN-9), introduced in Xiao et al. (2021a), consists of out-of-distribution data sets
that are different variations of a 9-class subset of ImageNet. The variants are designed to
have different amounts of foreground and background signal, see Figure 5 for examples. In
the Only-BG-B and Only-BG-T variants, the foreground is removed and replaced either with
a black box (Only-BG-B) or a tiled version of the background (Only-BG-T); No-FG features
images with the foreground shape cut out (and discernible), while Only-FG features the
foreground alone on a black background (similar to our BG RM); Mixed-Same, Mixed-Rand,
and Mixed-Next, feature foregrounds pasted onto backgrounds from different images of the
same class (Mixed-Same), random images (Mixed-Rand), and deterministically from the next
class such that backgrounds provide systematically misleading information (Mixed-Next). If
models learn to focus on the semantically meaningful foreground and ignore the background,
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Data Set Supervised MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

Original 95.6 92.7 93.8 94.2 94.9 95.6 96.0 94.1 95.0 94.9
Only-BG-B ↓ 11.4 6.1 6.1 3.6 5.4 4.9 6.0 10.9 8.8 8.3
Only-BG-T ↓ 16.3 14.8 12.9 9.3 12.7 11.8 11.5 15.8 16.7 17.6
No-FG 45.9 37.8 42.3 39.6 43.9 45.9 46.2 41.3 44.2 45.2
Only-FG ↑ 86.8 74.4 81.9 (+7.5) 86.1 (+11.7) 83.5 88.8 (+5.3) 87.7 (+4.2) 79.4 85.3 (+5.9) 84.3 (+4.9)
Mixed-Same ↑ 86.2 81.8 84.0 (+2.2) 87.9 (+6.1) 86.2 88.6 (+2.4) 90.1 (+3.9) 82.2 86.1 (+3.9) 86.3 (+4.1)
Mixed-Rand ↑ 78.9 70.7 76.3 (+5.6) 84.1 (+13.4) 79.6 83.2 (+3.6) 85.5 (+5.9) 71.3 77.1 (+5.8) 77.0 (+5.7)
Mixed-Next ↑ 77.2 67.0 73.0 (+6.0) 82.2 (+15.2) 77.6 80.7 (+3.1) 84.0 (+6.4) 69.0 74.3 (+5.3) 74.4 (+5.4)

Table 10: Robustness: Foreground-Background Shifts. Background augmentations
result in large performance gains on ImageNet-9 across all SSL methods, with BG Swaps gen-
erally exhibiting similar or better performance than BG RM. We highlight the performance
benefit on the variants of ImageNet-9 especially relevant to our work. All accuracies reported
for background augmented SSL methods are averages of 3 independent runs (we exclude SEM
to avoid clutter, see Table A14 for an expanded table that includes SEM). All pre-training
durations correspond to respective medium settings. Note that ImageNet-9 uses only 9
classes, so chance is ∼11.1%.

Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

Med. 11.1 7.7 (-3.4) 3.8 (-7.3) 6.6 5.4 (-1.2) 4.6 (-2.0) 10.9 9.0 (-1.9) 9.3 (-1.6)
Full 10.0 6.8 (-3.2) 4.4 (-5.6) 9.1 5.3 (-3.8) 4.4 (-4.7) 11.4 9.3 (-2.1) 9.0 (-2.4)

Table 11: BG-Gap: Background augmentations decrease BG-Gap of SSL Methods.

we should expect classification performance to decrease for Only-BG-B and Only-BG-T, and
to increase for Only-FG, Mixed-Same, Mixed-Rand, and Mixed-Next6.

We evaluate the baseline SSL methods as well as models with background augmentations
on all variants of IN-9 in Table 10. As in the supervised setting (see Xiao et al., 2021a), we
found that models which perform better on the Original IN-9 also perform better across
other IN-9 variants. Critically, we also found that background augmentations consistently
improved performance on IN-9, especially on the images with misleading backgrounds
(Mixed-X), and in some cases, enable outperforming the supervised baseline. We also found
that BG Swaps consistently improved performance over BG RM. For example, on Mixed-Next,
the MoCo-v2 baseline has an accuracy of 67.0%, worse than the supervised baseline’s
performance of 77.2%, but incorporating BG RM and BG Swaps increases this to 73.0% and
82.2%, respectively. These results demonstrate that background augmentations do indeed
encourage semantic focus on the foreground, and that explicitly discouraging background
focus (as in BG Swaps) is beneficial over simply removing positive signal in the background.
We also note that BG Random generally confers larger improvements over BG RM.

To quantify the impact of foreground-background correlations in the learned representa-
tions, we compute the BG-Gap (Xiao et al., 2021a) as the difference between accuracies in
the Mixed-Same and Mixed-Rand settings and find that background augmentations decrease

6. It is more difficult to determine whether performance should increase or decrease for the No-FG variant,
since this manipulation leaves a perfectly shaped cutout of the foreground on the background, which
provides substantial information about the structure of the foreground even though it has been removed.
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Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

Med. 54.7 56.7±0.1 (+2.0) 57.2±0.1 (+2.5) 60.7 61.7±0.2 (+1.0) 62.1±0.1 (+1.4) 59.3 61.2±0.3 (+1.9) 60.7±0.0 (+1.4)
Full 58.9 59.6 (+0.7) 60.3 (+1.4) 61.9 63.4 (+1.5) 62.8 (+0.9) 61.7 63.8 (+2.1) 63.4 (+1.7)

Table 12: Robustness: Natural Distribution Shift. Background augmentations improve
performance on ImageNet-v2, a test set for ImageNet. Notably, background augmentations
enable SwAV to perform on par with the standard supervised baseline (63.8%).

the BG-Gap in the SSL methods considered, relative to the baselines. For the baselines, we
also find that the BG-Gap slightly increases when trained for longer (Table 11) for BYOL
and SwAV, while it slightly decreases for MoCo-v2. We speculate that this is due to the use
of a large number (|Q| = 65536) of negative instances in MoCo-v2—it is possible some of the
negative instances have backgrounds similar to the query q, thereby implicitly discouraging
background focus. As such, SSL models do not seem to learn much background invariance
when trained for longer duration. When background augmentations are used, the BG-Gap
is roughly the same for shorter or longer training duration—in other words, background
augmentations do not require long training to be effective. Additional results: Appendix D
(Tables A14, A15, A16, A17, A18).

5.2 ReaL Imagenet Confirms Improvement of Semantic Focus

Next, we evaluate performance using Reassessed Labels (ReaL, Beyer et al. (2020)) for
ImageNet, which relabel ImageNet to better represent the semantic content of the images.
Using ReaL, Beyer et al. (2020) found that the gains due to many recent methods were
smaller than when the original labels are used. As with the original ImageNet labels, we
found that background augmentations substantially improve performance on ImageNet ReaL
(Table 2), confirming that background augmentations do induce increased semantic focus
rather than simply facilitating overfitting to the original ImageNet labels. In fact, the
improvement on ReaL is slightly larger when trained for fewer epochs.

5.3 Improvement on ImageNet-v2 and ObjectNet

We next evaluate performance on ImageNet-v2 (Recht et al., 2019) and ObjectNet (Barbu
et al., 2019). ImageNet-v2 is a test set for ImageNet and can be considered a “natural”
distribution shift setting. ObjectNet is a challenging test set where the object orientation,
viewpoint and background are varied in a controlled manner. We find that background
augmentations confer sizeable performance benefits in both of these settings, see Tables 12
and 13.

Notably, on ImageNet-v2, background augmentations enable SwAV to perform on par
with the supervised baselines. Specifically, the torchvision ResNet50 baseline has an accuracy
of 63.3% on ImageNet-v2, while our re-implementation of the standard, stronger baseline
(Goyal et al., 2018) has an accuracy of 63.8%. Additional results: Appendix D (Tables A19,
A20, A21).
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Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

Med. 14.4 16.8±0.2 (+2.4) 18.2±0.1 (+3.8) 20.4 22.1±0.3 (+1.7) 22.3±0.1 (+1.9) 16.1 19.3±0.1 (+3.2) 18.1±0.1 (+2.0)
Full 17.4 19.9 (+2.5) 20.8 (+3.4) 20.8 23.9 (+3.1) 23.4 (+2.6) 19.3 21.9 (+2.6) 21.3 (+2.0)

Table 13: Robustness: Rotation, Viewpoint, Background Shift. Background aug-
mentations improve performance on ObjectNet, a challenging test set that controls object
orientation, viewpoint and background.

Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

Med. 3.1 3.3±0.1 (+0.2) 3.6±0.1 (+0.5) 4.4 5.8±0.3 (+1.4) 6.1±0.1 (+1.7) 3.7 4.2±0.1 (+0.5) 4.1±0.1 (+0.4)
Full 4.2 4.7 (+0.5) 5.3 (+1.1) 5.3 7.2 (+1.9) 7.2 (+1.9) 5.2 6.0 (+0.8) 5.7 (+0.5)

Table 14: Robustness: Natural Adversarial Examples. Background augmentations
improve performance on ImageNet-A, a data set of natural adversarial examples.

5.4 Natural Adversarial Examples

We next evaluate classification performance on a particularly difficult distribution shift
data set: ImageNet-A, a data set of natural adversarial examples that were found to be
consistently mis-classified across models. These are extremely challenging for even supervised
methods with ResNet-50 accuracy at only ∼2.2% (Hendrycks et al., 2019b). As a first
experiment, we investigate whether the difficulty of natural adversarial examples partially
stems from misleading signal in the background. To test this, we modify the ImageNet-
A data set by removing backgrounds such that only the foreground is present (Only-FG
ImageNet-A). Indeed, we find that performance of supervised ResNet-50 improves by +2.8%7,
suggesting that some amount of the difficulty of natural adversarial examples stems from
misleading information in the background. We note that the magnitude of this number
must be interpreted with some caution, since this data set is also challenging for saliency
detection.

We next investigate the performance of standard SSL methods on this task, finding
substantively improved performance relative to the supervised methods (Table 14). Despite
this improvement, comparing the performance of SSL methods for the unmodified ImageNet-
A vs. Only-FG ImageNet-A (see Appendix D.3) demonstrates that SSL models perform
worse on the version of ImageNet-A with only foregrounds, suggesting that SSL methods
still may be overly focused on backgrounds. Together with the supervised results, this
suggests that background augmentations in SSL should prove helpful. Indeed, we find that
they are, with all versions of background augmentations resulting in substantially improved
performance on ImageNet-A. In particular, we found BG Swaps to be more effective than
BG RM, suggesting the importance of using background matched negatives. These results
demonstrate that part of the challenge of ImageNet-A stems from images with misleading

7. We use the same pre-trained torchvision ResNet-50 model which was used in the construction of the
data set. Since images mis-classified by this particular pre-trained model comprise the data set, the
ImageNet-A (Only-FG ImageNet-A) accuracy for this specific model is 0% (2.8%), though a model trained
from scratch has an ImageNet-A accuracy of ∼2.2%.
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Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

Med. 27.7 31.3±0.0 (+3.6) 32.3±0.1 (+4.6) 36.3 39.4±0.3 (+3.1) 38.4±0.0 (+2.1) 27.9 32.1±0.1 (+4.2) 31.2±0.3 (+3.3)
Full 30.4 33.4 (+3.0) 33.5 (+3.1) 34.4 40.2 (+5.8) 39.2 (+4.8) 29.4 32.7 (+3.3) 32.5 (+3.1)

Table 15: Robustness: Renditions. Background augmentations improve performance on
ImageNet-R, a data set of ImageNet-Renditions (e.g. paintings, sculpture).

Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

Med. 4.5 6.4±0.0 (+1.9) 8.4±0.2 (+3.9) 10.6 11.9±0.4 (+1.3) 11.4±0.1 (+0.8) 6.0 6.6±0.1 (+0.6) 6.7±0.1 (+0.7)
Full 7.8 10.6 (+2.8) 13.1 (+5.3) 10.4 13.2 (+2.8) 13.4 (+3.0) 9.1 10.1 (+1.0) 10.4 (+1.3)

Table 16: Robustness: Adversarial Attack. Background augmentations increase robust-
ness to FGSM adversarial attacks.

backgrounds and that background augmentations can substantially improve robustness to
these natural adversarial examples. Additional results: Appendix D (Tables A22, A23).

5.5 Improvement on ImageNet-Renditions

We next investigate the performance on ImageNet-R (Hendrycks et al., 2021), a data set
curated to measure generalization to various abstract visual renditions (e.g. paintings,
embroidery, cartoons etc., see Figure A2 for examples) of ImageNet classes. This is a
challenging OOD data set for classifiers trained on ImageNet, since they often rely heavily
on natural texture cues. Indeed, the supervised baseline accuracy for ResNet-50 is only
36.1%. We find that background augmentations confer significant performance benefits of
∼2-6%, suggesting that they help with generalizing to abstract visual renditions. Additional
results: Appendix D (Table A24).

5.6 Background Augmentations Improve Robustness to Adversarial
Perturbations

Ilyas et al. (2019) demonstrated that adversarial examples are partially driven by the learning
of non-robust, high frequency features which can be predictive of ground-truth classification
labels, but which are also highly susceptible to adversarial attacks. Since background
augmentations encourage focus on semantically meaningful content in images, a natural
question is whether these augmentations also confer increased robustness to adversarial
perturbations. To test this, we use a popular adversarial attack: FGSM (Goodfellow
et al., 2015). We found that background augmentations did indeed result in increased
robustness, with BG Swaps consistently conferring a greater benefit than BG RM (Table 16),
once again emphasizing the importance of penalizing focus on backgrounds. Additional
results: Appendix D (Table A25).

5.7 Evaluation on CIFAR-10 and 100

We find that the performance benefits of including background augmentations extends
to CIFAR-10 and 100, see Table 17. All methods used the same protocol to be directly
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comparable. All models receive full pre-training. Additional results: Appendix D (Table
A26).

Data Set MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

CIFAR-10 73.9 80.7 (+6.8) 76.0 (+2.1) 86.7 87.7 (+1.0) 88.1 (+1.4) 92.7 92.7 (+0.0) 92.9 (+0.2)
CIFAR-100 40.8 51.6 (+10.8) 44.9 (+4.1) 67.6 66.5 (-1.1) 67.0 (-0.6) 76.0 76.4 (+0.4) 76.4 (+0.4)

Table 17: CIFAR-10, 100. Background augmentations improve performance on linear
evaluation on CIFAR-10 and 100.

5.8 A Limitation of Learning Background Invariance

We have characterized the impact of background augmentations in view-invariant SSL,
finding improved generalization, robustness, label and training efficiency. Here, we discuss
an important limitation of our work. As previously discussed, by design SSL augmentations
are meant to induce “desirable” invariances—what is desirable depends on the downstream
tasks (e.g. Purushwalkam and Gupta (2020); Xiao et al. (2021b); Tian et al. (2020b)).
Consequently, when background is informative to the task at hand, we expect poorer
performance. We demonstrate this by linear evaluation on Places-205, finding that this
is indeed the case, see Table 18. Note that this limitation is not specific to background
augmentations. Indeed, “aggressive” cropping is an integral part of the augmentation
pipeline in nearly all high performing SSL methods but can be detrimental (Purushwalkam
and Gupta, 2020) like background augmentations, in similar situations.

This limitation of background augmentations on domains different from intended ap-
plication may be overcome by training a multi-head network with a shared backbone (as
in Xiao et al. (2021b)), so that one head is trained to be background invariant, while one
head is not. All models receive full pre-training; foreground masks used for background
augmentations were based on U2Net to control for mask quality.

5.9 Object Detection and Instance Segmentation

We report evaluation on the downstream tasks of object detection and instance segmentation,
since these are common evaluations for SSL methods. However, a priori we expect background
augmentations to yield only small gains in these tasks, since the models receive extensive
supervised information about object identities and locations during finetuning. Indeed,
identity information alone can induce strong localization ability (Simonyan et al., 2013).
Consistent with our expectations, we see only small gains in these tasks in Table 19. We

MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

28.7 27.3 (-1.4) 25.8 (-2.9) 44.5 40.0 (-4.5) 42.1 (-2.4) 49.6 48.1 (-1.5) 48.1 (-1.5)

Table 18: When background is relevant: Places-205. When background information
is important, background augmentations can reduce downstream performance.
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VOC 07+12 detection COCO detection COCO instance seg.

Method AP50 AP AP75 AP50 AP AP75 APm50 APm APm75

MoCo-v2 (repro.) 82.7±0.0 57.9±0.0 64.5±0.1 61.0 41.1 44.8 57.7 35.8 38.4
MoCo-v2 + BG RM 82.9±0.1 58.1±0.1 65.2±0.2 61.2 41.2 44.7 58.0 36.0 38.6

MoCo-v2 + BG Swaps 82.7±0.0 57.5±0.0 63.9±0.1 61.1 41.1 44.3 57.6 35.8 38.3

BYOL (repro.) 82.7±0.1 56.7±0.1 63.0±0.3 61.1 40.9 44.5 57.6 35.5 37.8
BYOL + BG RM 83.0±0.1 57.0±0.0 64.0±0.1 61.5 41.1 44.4 57.9 35.6 38.0

BYOL + BG Random 83.1±0.2 57.6±0.1 64.7±0.1 61.7 41.4 44.7 58.4 36.0 38.3

SwAV (repro.) 82.3±0.1 55.6±0.0 61.9±0.2 61.4 40.7 43.7 57.6 35.4 37.4
SwAV + BG RM 82.4±0.0 55.9±0.1 62.2±0.2 61.2 40.6 44.0 57.6 35.4 37.4

SwAV + BG Random 82.4±0.1 55.9±0.1 62.4±0.2 61.2 41.4 44.8 58.0 36.0 38.3

Table 19: Detection and Instance Segmentation. Background Augmentations result
in small improvements in detection and instance segmentation tasks, likely due to extensive
supervision involved in subsequent training. All VOC metrics reported are average of 3
independent runs.

note that it is possible that background augmentations may yield larger gains in these tasks
with less training or by incorporating the augmentations into the finetuning pipeline (Ghiasi
et al., 2020). Additional results: Appendix D (Table A27).

5.10 Background Augmentations Increase the Shape Bias of SSL Methods

Supervised Convolutional Neural Networks (CNNs) have been found to be biased toward
texture, i.e. they tend to classify based on the texture information in an image over shape,
whereas humans are more shape biased; increasing the shape bias of supervised CNNs has
been found to increase accuracy and robustness (Geirhos et al., 2019). Recent work (Geirhos
et al., 2020) has also found that many SSL methods are heavily texture biased like their
supervised counterparts. We use the shape bias measure (Geirhos et al., 2019) to probe the
pre-trained SSL models to gain some insight. The shape bias of a model is computed using
texture-shape cue conflict stimuli (the shape and texture cues in the image correspond to
different ImageNet classes, e.g. see Figure A3) as the fraction of classification decisions that
correspond to shape information.

We find that (see Table 20) while the SSL methods considered are heavily texture biased,
they are less so than their supervised counterpart, with the exception of SwAV. However,
the default setting of SwAV uses multi-crop with 2 global views and 6 local views; the
local views may be expected to push the model to be biased toward local texture features.
Consistent with this hypothesis, SwAV trained without multi-crop8 has a shape bias of
27.4. Our second finding is that across all SSL methods, background augmentations increase
shape bias (Tables 20, A28). We note that our improvements on the ImageNet-R data set,
whose texture cues are OOD relative to ImageNet, may have been driven in-part by the
increased shape bias of the models trained using background augmentations. Our findings

8. We evaluated the shape-bias of an official SwAV model trained for 400 epochs without multi-crop from
https://github.com/facebookresearch/swav.
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Supervised MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

22.1 28.8 31.7 33.4 27.6 29.8 31.0 17.0 17.7 19.4

Table 20: Background augmentations increase shape bias. SSL methods considered
generally have a higher shape bias than the supervised baseline. SwAV deviates from this
pattern due to multi-crop (SwAV w/o multi-crop shape bias: 27.4).

raise the intriguing possibility that background augmentations induce representations that
are (slightly) more brain-like. All models receive full pre-training.

6. Related Work

Semantic Focus and Robustness. A number of recent works have investigated whether
non-semantic features are exploited by models in supervised learning. We draw heavy
inspiration from this literature, especially Xiao et al. (2021a), Sehwag et al. (2020) and Beery
et al. (2018) who demonstrate the importance of backgrounds for image classification. Other
works have demonstrated the importance of high-frequency information for classification,
both in traditional image classification (Jo and Bengio, 2017) and in the context of adversarial
robustness (Ilyas et al., 2019). There have also been a number of works investigating the
importance of shape vs. texture for classification decisions, both in supervised (Geirhos
et al., 2019; Hermann et al., 2020) and self-supervised learning (Geirhos et al., 2020). Similar
to the findings in the supervised setting in Geirhos et al. (2019)—that increasing the shape-
bias increases robustness and accuracy, we found that background augmentations increase
shape-bias and also improve robustness and accuracy.

While there has been much work investigating robustness properties in the supervised
setting (e.g. Xiao et al. (2021a); Hendrycks et al. (2019b, 2021); Goodfellow et al. (2015)), the
self-supervised setting has received relatively less attention. Geirhos et al. (2020) characterize
the robustness of several SSL models to low-level noise distortions but do not investigate
other aspects of robustness nor approaches to improve semantic focus and performance.
We evaluate a diverse spectrum of high performing SSL methods in 17 distribution shift
settings, in addition to investigating approaches to improve robustness. Thus, our work is
complementary to existing work.

Self-Supervised Learning. We do not make a formal distinction between self-/un-
supervised learning (but see Jing and Tian (2020)) and broadly discuss related work.
Generally, representation learning without human-annotated labels involves solving “pretext”
prediction tasks. We coarsely organize the literature as follows.

Hand-crafted pretext tasks. Early work used hand-crafted pretext tasks such as predicting
image orientation (RotNet, Gidaris et al. (2018)), image inpainting (Pathak et al., 2016),
solving image jigsaw puzzles (Noroozi and Favaro, 2016), denoising (Vincent et al., 2008)
and cross-channel (Zhang et al., 2016, 2017d) auto-encoding for representation learning.
Combining multiple pretext tasks (Doersch and Zisserman, 2017) and using larger networks
(Kolesnikov et al., 2019) can improve performance.
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Learning view invariance. While hand-crafted pretext tasks have been shown to be useful
for learning representations useful for downstream tasks, their performance has been far
from their supervised counterparts. Learning view-invariant representations has recently
been a fruitful direction in SSL; such approaches date back to Becker and Hinton (1992).
We coarsely group such works based on how trivial representations are avoided.

• Contrastive learning. Contrastive learning (Hadsell et al., 2006) is a framework for
learning representations from data organized into similar/dissimilar pairs. Contrastive
learning prevents trivial representations through use of dissimilar pairs and has been a
popular design choice in SSL (He et al., 2020; Chen et al., 2020c,a,b; Wu et al., 2018;
Oord et al., 2018; Hjelm et al., 2019; Ye et al., 2019; Hénaff et al., 2020; Bachman et al.,
2019; Tian et al., 2020a; Misra and van der Maaten, 2020; Dosovitskiy et al., 2014;
Huynh et al., 2020).

• Clustering. A number of SSL methods have avoided trivial representations through
clustering (Asano et al., 2020; Caron et al., 2018, 2019, 2020; Ji et al., 2019). There
has also been work (Li et al., 2021b; Zhuang et al., 2019) that bridges clustering and
contrastive learning approaches.

• Other. Methods such as BYOL (Grill et al., 2020), SimSiam (Chen and He, 2020)
and Barlow Twins (Zbontar et al., 2021) are not explicitly contrastive nor based on
clustering and prevent trivial representations in other ways.

While we compare performance with respect to numerous SSL methods to situate our
work in literature, we note that we do not propose any new SSL methods. Rather, we
improve upon the core ingredient of the best performing methods: the augmentation pipeline.
We choose one SSL method from each coarse grouping of the literature to form a diverse
test bed of SSL methods, so as to characterize when background augmentations can or
cannot confer benefits, as well as to demonstrate the generality of our results. We show that
learning background invariance improves performance, robustness and label efficiency across
a diverse spectrum of high-performing SSL methods. Importantly, our extensive analyses
led to insights that allowed us to improve performance beyond a plug-and-play approach.
While we focus on view-invariant SSL approaches that differently augment the same image
to generate views, background augmentations can also be applied to approaches that use
different frames from video to generate views (e.g. Zhuang et al. (2020); Sermanet et al.
(2018); Gordon et al. (2020); Han et al. (2019)).

Analyzing and Improving SSL Augmentation Pipelines. The augmentation pipeline
for most high-performing SSL methods is similar. A number of recent studies have focused
on analyzing and improving this pipeline, e.g. Tamkin et al. (2021) learn the augmentations
jointly with the contrastive learning objective; Tian et al. (2020b) use labeled data to
learn color spaces which are then split to generate views and also characterize ImageNet
acc. vs. augmentation strength for many augmentations. Purushwalkam and Gupta (2020)
investigate invariance to occlusion, viewpoint, and category instance and show that common
SSL pipelines encourage occlusion invariance—a useful property for object recognition tasks.
Tian et al. (2020b) observe on a synthetic toy dataset that the background can overwhelm
the foreground, but do not investigate further nor propose a solution.
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We show that background augmentations improve semantic focus in representations,
leading to better generalization and robustness. Of particular note, Selvaraju et al. (2020)
also aims to improve focus on semantically meaningful content in images; they do so by
constraining the crops used in the SSL augmentation pipeline to contain the object of interest
as determined by a saliency method. We also investigate the impact of constraining crops
to contain the salient object, and find that it does not improve performance (Appendix
C.6) on top of background augmentations. Critically, in contrast with our work, Selvaraju
et al. (2020) relies on a saliency detector trained using ImageNet class labels making this
method not truly self-supervised. Note that Selvaraju et al. (2020) also investigate using an
“attention” loss computed using Grad-CAM (Selvaraju et al., 2017), which we discuss below.

“Copy-Paste” Augmentations. There is a long history of work, largely in the supervised
setting, that has investigated the use of “copy-paste” augmentations in which “copied”
foregrounds are “pasted” onto backgrounds, generally with the aim of generating more
labeled data. We draw heavy inspiration from this literature. Copy-paste has been used for
learning optical flow (Dosovitskiy et al., 2015), instance detection (Dwibedi et al., 2017),
object detection (Georgakis et al., 2017; Dvornik et al., 2018), text localization (Gupta et al.,
2016) and instance segmentation (Remez et al., 2018; Fang et al., 2019; Ghiasi et al., 2020).
In these works, the segmentation masks required for copying are obtained from human
annotation or using networks trained in a supervised manner to generate them. This implicit
or explicit reliance on human annotation has been an obstacle limiting the application of
copy-paste outside of the supervised setting where it is widely used.

Recent work (Zhao et al., 2021) took a first step in the SSL setting by using a heuristic
saliency method to generate a mask, and applied a “copy-paste” augmentation similar to
BG RM, finding improved performance on ImageNet linear classification accuracy. However,
the gain achieved in their best performing SSL method (MoCo-v2+DiLo-RBD) is only +0.2%
(see Table 2). Thus, it remains unclear if such augmentations can significantly benefit SSL,
especially high performing SSL methods—indeed, in Zhao et al. (2021), the gains rapidly
and monotonically decline with the baseline SSL method’s performance. Thus, not only
is it unclear if copy-paste can significantly benefit SSL, it is unclear when and how such
augmentations confer benefits. Further, the impact of such augmentations on downstream
tasks is also unclear, though Zhao et al. (2021) report small gains (∼0.4-0.6 AP %) on object
detection and instance segmentation tasks.

In contrast, in our work, a) we develop a completely unsupervised method to generate
high quality masks and demonstrate the utility of background augmentations in conferring
large performance benefits (∼1-2%) across a spectrum of high performing SSL methods
(e.g. we obtain a 7× larger gain of +1.4 on MoCo-v2 using BG RM), b) we systematically
characterize when and how background augmentations confer benefits: it is not sufficient
to merely decorrelate the foreground and background nor to disincentive focus on the
background; rather, background augmentations confer benefits when there is a similarity
comparison between images in view-invariant SSL, where the background maybe used as a
shortcut, c) Contrary to Zhao et al. (2021), we show that using natural random backgrounds
(BG Random) can result in better performance, d) further, our insights on how background
augmentations work enable us to develop a novel, more effective background augmentation
method (BG Swaps), leading to even larger performance gains (+1.8) (a 9× larger gain on
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MoCo-v2), e) we show how benefits from background augmentations may be hidden by
implementation choices, f ) Perhaps most critically, we focus on generalization in OOD
settings, robustness, label and training efficiency, g) we also characterize the limitations of
background augmentations.

We note that in our work, we use the term “background augmentation” rather than
“copy-paste” augmentation, since our purpose is to discourage focus on the backgrounds,
rather than creating more labeled data for the foreground (e.g. Ghiasi et al. (2020); Dwibedi
et al. (2017)). However, more broadly, even in absence of labels our work enables foreground
augmentations for SSL, making it possible to create images with multiple objects in a
controlled manner.

Mixing Augmentations. Background augmentations have some resemblance to mixing
augmentations used in the supervised setting, e.g. mixup (Zhang et al., 2018a), CutMix
(Yun et al., 2019), which mix information contained in images. In contrast with background
augmentations, these methods a) mix images ignoring the semantic relevance of parts of
an image and b) also mix the corresponding labels. Extending such mixing augmentations
to SSL is an orthogonal improvement to our work and may be a fruitful line of inquiry
for future work. Relatedly, but conversely, mixing augmentations that consider semantic
relevance of parts of an image in the supervised setting, could also be a fruitful direction.

“Attention” Loss. Selvaraju et al. (2020) investigate the impact of using an additional
“attention” loss that encourages similarity between the Grad-CAM heatmap of the query
and its saliency mask. The Grad-CAM heatmap is computed by additionally encoding the
masked (background removed) key using the teacher network and computing the spatial
regions in the query that the network relies on to map the masked key to the query, by
back-propagation on the activations in the last convolutional layer. In contrast, our work,
besides not relying on a saliency detector trained using supervised information, is much
simpler—simply adding an augmentation to the data augmentation pipeline and thereby
more agnostic to the specific method and yet, is highly effective.

“Hard” Instances. Our work is also related to the literature on “hard negatives”, which
have been explored recently in the context of contrastive SSL to improve learning (Kalantidis
et al., 2020; Wu et al., 2021; Robinson et al., 2021; Cai et al., 2020). In this literature, hard
negative instances are “mined” using distances in the embedding space. In a broader sense,
creating negatives whose background matches the query (as we do in BG Swaps) can also be
considered “hard negatives” and in a similar vein, one could consider the positive pair (q
and k+) with different backgrounds as “hard positives”. Mining for hard negatives (or even
hard positives) is an orthogonal improvement to our work.

7. Discussion

We investigated the potential of background augmentations for self-supervised learning. We
explored several variants of background augmentations, including those with constant gray
backgrounds (BG RM), randomized natural backgrounds (BG Random), and a novel method that
uses matched backgrounds between queries and negatives (BG Swaps). Across view-invariant
SSL methods, we found that background augmentations result in sizeable performance
improvements ∼1-2% on ImageNet linear classification, enabling performance on par with
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the supervised baseline. In the limited-labels setting, we found even larger performance
benefits. Across SSL methods, we found that BG Random and BG Swaps often lead to larger
performance improvements than BG RM due to being more in-distribution. However, other
factors such as ease of optimization (Section 4.6) also play a role. Background augmentations
take a large step forward in reducing the amount of training required for competitive
performance in SSL, e.g. enabling performance on par with or better than many recent SSL
methods trained for 800-1000 epochs in only 100 epochs.

Interestingly, we found that background augmentations conferred no benefit in super-
vised training nor in RotNet, an SSL method not based on view-invariance. These results
demonstrate the importance of designing augmentations tailored to the SSL setting, espe-
cially view-invariant SSL. These findings are timely and relevant to the community, since
view-invariant SSL methods are currently the best performing methods across a range of
architectures and downstream tasks.

As SSL methods shrink the gap to their supervised counterparts, it has become in-
creasingly important to characterize the limitations of performant SSL methods as well
as to understand their robustness and generalization properties in a more comprehensive
manner. Across state-of-the-art SSL methods, we found that background augmentations
enable increased model focus on semantically meaningful content and lead to improved ro-
bustness to numerous distribution shifts including ImageNet-9, natural adversarial examples,
ImageNet-R, adversarial attacks, as well as natural distribution shift. Our analyses revealed
an increased shape bias for SSL models trained with background augmentations, which may
have driven some of the improvement, especially on the ImageNet-R data set where texture
cues are OOD relative to ImageNet, requiring representations to better encode shape cues in
an image for improved performance. All of these results raise the intriguing possibility that
background augmentations induce representations that are (slightly) more brain-like. Future
work could investigate this idea further, potentially by comparing representations with
neuronal recordings (Yamins et al., 2014). Relatedly, neural networks are known to be easily
fooled by objects in unusual poses (Alcorn et al., 2019), unlike humans. An interesting line
of investigation for future work could be to learn robustness to unusual poses by foreground
augmentations (e.g. using foreground masks to augment data with rotated objects). Indeed,
such approaches have been adopted in the supervised setting (e.g. Dwibedi et al., 2017;
Ghiasi et al., 2020) when segmentation masks for foreground objects are available. Our work
enables such approaches in the absence of human-annotation, opening up new possibilities
beyond our application here in background augmentations.

It is worth noting that background augmentations as implemented here are specific
instantiations of encouraging background invariance—we focused on extensively evaluating
simple instantiations. Specifically, using a saliency method to separate foreground and
background could be problematic in more complex scenes. Remarkably, though ImageNet
has a large share (e.g. Stock and Cisse, 2018; Beyer et al., 2020) of multi-object multi-class
images, the simple approach we have taken here works well. More sophisticated approaches
hold the potential for further improvement, e.g. one straightforward approach could be to
copy foregrounds from simple images using saliency detection and paste multiple objects
into images to create more complex scenes in controlled manner, either offline or on-the-fly.

There has been increasing recent interest (Chen et al., 2021; Caron et al., 2021; Li
et al., 2021a) in self-supervised learning for Vision Transformers (ViTs, Dosovitskiy et al.
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(2021)). Future work could investigate whether background (or foreground) augmentations
can benefit SSL for ViTs. Yet another interesting line of inquiry could be to investigate the
impact of background augmentations in high performing semi-supervised learning methods
(e.g. FixMatch (Sohn et al., 2020)).
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Organization of Supplementary Information. Appendix A contains implementation
details and evaluation protocols. In Appendix B, we characterize the impact of foreground
mask quality by systematically distorting the masks in numerous ways. Appendix C contains
additional ablations. Appendix D contains additional results, including characterization of
robustness to image corruptions and evaluations of models where background augmentations
used masks generated by a supervised saliency method, U2Net. Table captions throughout
the appendices have additional redundancy to increase ease of reference.

Appendix A. Implementation Details

In this Appendix, we discuss pre-training details for each of the SSL methods in our test bed
and the protocols followed for downstream evaluations. We also discuss the implementation
details of the unsupervised saliency detection method, DeepUSPS2.

General Settings. All experiments use the ResNet-50 (He et al., 2016) architecture unless
otherwise indicated. All specified learning rates are base learning rates for a batch size of
256 unless otherwise indicated. Learning rates are obtained by linearly scaling the base
learning rates as base learning rate × batch size/256. We closely follow the implementation
details of the original works where possible. Settings not mentioned here are identical to
respective original works. All models were implemented using PyTorch (Paszke et al., 2019),
torchvision (Marcel and Rodriguez, 2010) and NumPy (Harris et al., 2020). All cosine
schedules (Loshchilov and Hutter, 2017) are half-period without restarts. Binary foreground
masks used in background augmentations are obtained by thresholding saliency predictions
between 0-1 using a threshold value of 0.9; by default, we use our unsupervised saliency
detector DeepUSPS2.

A.1 Pre-Training of SSL Methods

MoCo-v2. We use a larger (than the standard 256) batch size of 1024 (distributed across
32 GPUs) with a 20 epoch warmup for 220 (800) epochs in the medium (full) setting.
These setting were chosen to speed up pre-training while matching (or improving upon) the
reported performance at a similar number of epochs in Chen et al. (2020c).

Background Augmentations. In BG RM, backgrounds were removed in q and k+ indepen-
dently with p = 0.2. In BG Swaps, ppos = pneg = 0.2 and crops in RandomResizedCrop (RRC)
were constrained to include FGmin = 0.1 fraction of the foreground, by rejection sampling.
Concretely, RRC parameters were sampled up to 10 times to satisfy constraints, defaulting to
a CenterCrop if no satisfactory parameters are sampled. See Appendix C.6 for additional
discussion and ablations. In BG Swaps, the background matched negatives are batched
together with the positive keys during forward pass through the teacher/key network; only
the positives keys are subsequently placed in the queue Q.

BYOL. We used a batch size of 4096 (distributed across 64 GPUs). Our implementation
used synchronized batch-normalization layers (synced per group of 8 GPUs) using the apex9

library. In RRC, we used a scale setting of (0.2, 1.0). We obtained similar results in the medium
setting (300 epochs) when we instead used a) synchronized batch-normalization layers across

9. https://github.com/NVIDIA/apex
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Figure A1: Higher pre-training loss but better generalization. Background augmen-
tations generally lead to a higher final pre-training loss as they make the objective function
more “difficult”, but can lead to better generalization.

all GPUs (global sync) or b) used a scale setting of (0.08, 1.0) as in (Grill et al., 2020), but
this may be different in the full setting (1000 epochs), potentially further improving on the
performance we obtained in the full setting using background augmentations.

Background Augmentations. In BG RM, p = 0.15 and FGmin = 0.05, while in BG Random,
p = 0.05 and FGmin = 0.05.

SwAV. Pre-training was identical to original implementation (Caron et al., 2020). Back-
ground Augmentations. In BG RM, p = 0.25 and FGmin = 0.15, while in BG Random, p = 0.2
and FGmin = 0.15. We only apply background augmentation to the global views in
multi-crop.

RotNet. Pre-training procedure was largely similar to the original paper (Gidaris et al.,
2018). When background augmentations were used, BG RM and BG Random were applied before
the default augmentations of RandomResizedCrop, RandomHorizontalFlip and Rotation.
Models were pre-trained for 30 epochs with a learning rate of 0.01, with a step schedule (10,
20) and a decay factor of 0.1 using SGD with momentum=0.9, a batchsize of 192 and weight
decay of 5× 10−4.

Discussion: Loss and Background Augmentations. Background augmentations
make the objective function more “difficult”, leading to a higher final pre-training loss
but can lead to better generalization, see Figure A1. This is consonant with previous work
(He et al., 2020; Kolesnikov et al., 2019) finding that the loss of the pretext task is not
necessarily monotonically related to generalization performance.

A.2 Training DeepUSPS2

We trained a DRN-D-105 (Yu et al., 2017) network via BYOL for 500 epochs to an accuracy
of 73.9% with the following settings: base learning rate of 0.3, weight decay of 1× 10−6 and
momentum coefficient of 0.99 for the teacher network. All other settings use the defaults for
training BYOL. We then use this network as an initialization to train a saliency detector.
Note that previous work instead initialized with a network trained using ImageNet class
labels as well as CityScapes (Cordts et al., 2016) segmentation labels. We train this network
following the procedure from DeepUSPS, but in phase 1 of training, we use a learning rate
of 6× 10−6 instead of the default value of 1× 10−6.
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A.3 Linear Evaluation on ImageNet

Linear evaluation protocol was largely similar to original work. For MoCo-v2 and SwAV, we
evaluate with a larger batch size to speed up evaluation. We train the linear classifier for
more epochs in the case of MoCo-v2 and BYOL to reduce variability in the results. Note
that warmup is not required, but for simplicity we opted to keep the training procedure
close to standard supervised training.

MoCo-v2. The linear classifier was trained for 120 epochs, with a step schedule of 60, 80,
100 and a decay factor of 0.1, with a warmup of 10 epochs, a batch size of 2048 (distributed
across 32 GPUs). Parameters in the backbone were frozen to the pre-trained values.

BYOL. The linear classifier was trained for 140 epochs, with a step schedule of 80, 100,
120 and a decay factor of 0.1. We used a base learning rate of 0.2 and a batch size of 1024
distributed across 16 GPUs. Parameters in the backbone were frozen to the pre-trained
values.

SwAV. The linear classifier was trained for 100 epochs with 5 warmup epochs using a
batch size of 2048 (distributed across 32 GPUs) and a cosine schedule. Parameters and
buffers in the backbone were frozen to the pre-trained values.

RotNet. The linear evaluation procedure was largely similar to the original paper (Gidaris
et al., 2018). A linear classifier was trained on top of Conv5 layer using SGD with Nesterov
momentum over 35 epochs using a batchsize of 256 and a momentum of 0.9 with a learning
rate of 0.1, a step schedule of (5, 15, 25) and weight decay of 5× 10−4.

General Settings. Following common protocol, pre-processing during training consists
of RandomResizedCrop and RandomHorizontalFlip followed by normalization. The pre-
processing on validation images consists of Resize to size 256 along the shorter edge of the
image, followed by CenterCrop to size 224×224 and normalization.

A.4 Background Augmentations in the Supervised Setting

By default, training followed the settings specified in Methods (Section 2). Here, we discuss
implementation details for a) re-training a classifier without background augmentations and
b) finetuning the whole network without background augmentations and c) longer training.

A.4.1 Re-training a linear classifier w/o background augmentations

We trained a linear classifier from scratch on top of the frozen trunk without background
augmentations using standard pre-processing and data augmentation. We used SGD with
momentum of 0.9 , a batchsize of 4096 with a base learning rate of 0.01 and a cosine schedule
over 40 epochs and a weight decay of 1× 10−4.

A.4.2 Finetuning w/o background augmentations

We finetuned the network without background augmentations, using standard preprocessing
and data augmentation. We used SGD with momentum of 0.9 , a batchsize of 4096 with
a base learning rate of 0.0005 and a cosine schedule over 20 epochs and a weight decay of
1× 10−4.

36



Background Augmentations for Self-Supervised Learning

Painting Sculpture Embroidery

Origami Cartoon Toy

Figure A2: Examples from ImageNet-Renditions. Image from Hendrycks et al. (2021).

A.4.3 Longer Training

Training followed the settings specified in Methods (section 2), with the following changes:
following CutMix (Yun et al., 2019), training was for 300 epochs with a step schedule of (75,
150, 225).

A.5 Evaluation in Limited-Labels Setting

For consistency with previous work, we use the same fixed splits10 as in Chen et al. (2020b)
for the 1% and 10% labels settings of ImageNet training data.

A.5.1 Linear Evaluation

For simplicity, we train a linear classifier using the same settings as in the corresponding
100% labels linear evaluation, except that we use the training data from the corresponding
split (1% or 10%).

A.5.2 Semi-Supervised Evaluation

MoCo-v2/BYOL: We finetuned the network for 50 epochs with a step schedule (30, 40) with
a decay factor of 0.1, with a batch size of 256 and no weight decay. For MoCo-v2, in the 1%
(10%) label setting, we used a learning rate of 1.0 (0.3) for the classifier head and a learning
rate of 1× 10−4 (1× 10−4) for the trunk. For BYOL, in the 1% (10%) label setting, we used
a learning rate of 1.0 (0.1) for the classifier head and a learning rate of 1× 10−3 (1× 10−3)
for the trunk. SwAV: we use the same settings as in the original implementation (Caron
et al., 2020).

A.6 Robustness Evaluations

Robustness evaluations do not involve any additional training—they use the same network
(backbone and linear classifier) used for linear evaluation on ImageNet in the 100% labels
setting. Note that it is common for robustness benchmarks to use the pre-trained model
from torchvision11 as the supervised baseline. We additionally report metrics using our re-
implementation of the standard, stronger supervised baseline in Goyal et al. (2018). We follow

10. https://github.com/google-research/simclr/tree/master/imagenet_subsets

11. https://github.com/pytorch/vision/tree/master/torchvision/models
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the pre-processing protocols from respective original works; unless otherwise mentioned, this
is simply the standard way that ImageNet validation images are pre-processed (Appendix
A.3).

ImageNet-9. ImageNet-9 (Xiao et al., 2021a) (IN-9) consists of data sets with varying
amount of foreground-background signal. Variations of IN-9 (excluding the “Original”)
involve a distribution shift in foreground-background statistics. We use the data and code
12 from the original work for evaluation.

ImageNet-ReaL. Beyer et al. (2020) relabel the ImageNet validation images to better
represent the semantic content present in the images; we use the Reassessed Labels13

(ReaL) to evaluate ImageNet-ReaL accuracy. Our supervised (torchvision) baseline has an
ImageNet-ReaL accuracy of 82.7% (82.9%).

ImageNet-v2. ImageNet-v2 (Recht et al., 2019) consists of three test data sets for
ImageNet, with 10,000 images each. The three variations are a) MatchedFrequency, b)
Threshold0.7 and c) TopImages. Accuracies reported in the main text (Section 5.3) cor-
respond to MatchedFrequency. Accuracies for other variations are reported in Appendix
D.2.

ObjectNet. ObjectNet (Barbu et al., 2019) is a test data set that controls for rotation,
background, and viewpoint. It contains 50,000 images with 313 object classes. 113 of
ObjectNet’s classes overlap with ImageNet—we evaluate on this subset14. Following the
original work15, after removing the one-pixel red border, images are resized to size 224 along
the shorter edge, followed by pre-processing steps of CenterCrop and normalization as in
Appendix A.3). Our supervised (torchvision) baseline has an ObjectNet accuracy of 24.4%
(24.7%).

ImageNet-A. ImageNet-A (Hendrycks et al., 2019b) is a data set of “natural” adversarial
examples—images obtained by a process of adversarial filtering of natural images. It consists
of 7,500 images mis-classified by the torchvision ResNet-50 pre-trained model16. Hendrycks
et al. (2019b) report that a corresponding model re-trained from scratch has an accuracy of
2.2%; our supervised baseline has an accuracy of 2.4%.

ImageNet-R. ImageNet-R is a data set curated to measure generalization to various
abstract visual renditions (e.g. paintings, embroidery, cartoons etc., see Figure A2 for
examples) of ImageNet classes. ImageNet-R involves a shift in texture statistics and contains
30,000 images. Our supervised (torchvision) baseline has an ImageNet-R accuracy of 36.0%
(36.1%).

Adversarial Attack. We used foolbox (Rauber et al., 2020) for `∞ FGSM adversarial
attack with ε = 8/255 applied to ImageNet validation images.

12. https://github.com/MadryLab/backgrounds_challenge

13. https://github.com/google-research/reassessed-imagenet

14. We used code from https://github.com/lucaslie/torchprune to map images to ImageNet classes.
15. https://github.com/abarbu/objectnet-template-pytorch

16. See Hendrycks et al. (2019b) for additional filtering criteria used.
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Texture: Bottle

Shape: Cat

Texture: Elephant
No Cue ConflictNo Cue Conflict

Figure A3: Examples with and without texture-shape cue conflict.

ImageNet-C. ImageNet-C (Hendrycks and Dietterich, 2019) consists of 75 test data sets;
15 types of corruptions from four main categories (noise, blur, weather, digital) are applied to
ImageNet validation images to generate the test images. Each corruption type has five levels
of severity. We report the average performance on the four main categories of corruptions in
Appendix D.4. Pre-processing steps are CenterCrop and normalization as in Appendix A.3.

A.7 Shape-Bias Evaluation

The shape-bias (Geirhos et al., 2019) of a model is computed using texture-shape cue conflict
stimuli17 (the shape and texture cues in the image correspond to different ImageNet classes,
e.g. see Figure A3) as the fraction of classification decisions that correspond to shape
information; this computation only considers the subset of “correctly” classified images—
either the shape or texture category are correctly classified. Images are pre-processed as in
Appendix A.3.

A.8 Linear Evaluation on CIFAR-10, 100

All methods were evaluated using the same protocol for fair comparison. A linear classifier
was trained with SGD with momentum 0.9 for 100 epochs with a base learning rate of 0.08,
a batch size of 32 and a cosine learning rate schedule.

A.9 Linear Evaluation on Places-205

All methods were evaluated using the same protocol for fair comparison. A linear classifier
was trained with SGD with momentum 0.9 for 28 epochs with a base learning rate of 1.0, a
batch size of 256 and a step schedule of 7, 14, 21 and a decay factor of 0.1. Weight decay
was set to 0.0001.

A.10 Object Detection and Instance Segmentation

We follow standard protocol across all SSL methods: a) VOC detection: We finetuned
a Faster R-CNN (Ren et al., 2015) in VOC 2007 + 2012 trainval for 24k iterations and
evaluated in VOC 2007 test, b) COCO detection and COCO instance segmentation: We
fine-tuned a Mask R-CNN (He et al., 2017) (2× schedule) in COCO 2017 train, evaluated
in COCO 2017 val. All Faster/Mask R-CNN models are with the C4-backbone. We use
Detectron2 (Wu et al., 2019) for all experiments18.

17. We use the cue conflict stimuli released at https://github.com/rgeirhos/texture-vs-shape.
18. We use the code provided at https://github.com/facebookresearch/moco/tree/main/detection.
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Figure A4: Mask Distortion: Rotation. Examples of varying distortion strength.

VOC: For MoCo-v2 and SwAV, we followed the settings from their corresponding original
papers. In the case of BYOL, we followed the settings of MoCo-v2 with one deviation: we
used a base learning rate of 0.08. COCO: we used the default settings of MoCo-v2 for all
methods.

Appendix B. Characterizing the Impact of Mask Quality

While the results in Section 4.7 show that there may be diminishing gains to using higher
quality masks than those provided by DeepUSPS2, it does not give us a clear picture of the
impact of mask quality. For example, one may wonder,

• How does performance vary as a function of mask quality?

• Which SSL methods and background augmentations are more robust to mask quality?

To answer these questions, and in an attempt to gain further insight into the mechanism
by which background augmentations improve representations, we systematically perturb the
quality of the foreground masks. In these experiments, we use U2Net to generate the initial
foreground masks (that we then perturb) to minimize the possibility of starting with a poor
mask and maintain greater control over the quality of a perturbed mask.

We perturb the masks in numerous ways across a range of distortion strengths/levels.
The distortions we consider are: a) rotation (see Figure A4 for examples), b) shearing (Figure
A5), c) translation (Figure A6), d) horizontal flips and e) using bounding-box masks instead
of the original mask (Figure A7). We expect mask translation and using bounding-box
masks to be particularly challenging.

40



Background Augmentations for Self-Supervised Learning

MoCo-v2 BYOL SwAV

Max
Rotation baseline BG RM BG Swaps baseline BG RM baseline BG RM

0◦ 67.7 69.3 (+1.6) 69.7 (+2.0) 72.7 73.5 (+0.8) 72.2 73.7 (+1.5)
5◦ - 69.3 (+1.6) 69.3 (+1.6) - 73.1 (+0.4) - 73.7 (+1.5)
10◦ - 69.0 (+1.3) 69.3 (+1.6) - 73.3 (+0.6) - 73.6 (+1.4)
15◦ - 68.7 (+1.0) 69.4 (+1.7) - 73.3 (+0.6) - 73.3 (+1.1)
20◦ - 68.7 (+1.0) 69.1 (+1.4) - 73.1 (+0.4) - 73.5 (+1.3)
25◦ - 68.4 (+0.7) 69.0 (+1.3) - 73.1 (+0.4) - 73.5 (+1.3)

Table A1: Mask Distortion: Rotation. Background augmentations are robust to
substantial mask noise induced via rotations of the foreground mask. Of note,
BG Swaps maintains a large performance benefit even for strong distortions. We highlight
the ∆ relative to the baselines with no background augmentations.

We characterize the dependence on mask quality for BG RM across all the view-invariant
SSL methods in our test bed; in the case of MoCo-v2, we additionally include BG Swaps.
We apply the respective distortion to each mask, every time it is used in a background
augmentation. All experiments are in the respective medium duration settings; we report
ImageNet accuracy. We make the following observations:

Low quality masks can still be beneficial. Overall, we find that there is substantial
robustness to mask quality. In many instances, only a little of the foreground remains in view,
yet background augmentations maintain improved performance over the baseline. We find
that mask translation and using bounding-box masks are particularly challenging distortions
as expected—surprisingly, some performance benefits persist (but quickly disappear with
higher distortion strength).

SwAV and BG Swaps are quite robust to mask quality. We find that BG Swaps is far
more robust to mask quality compared to BG RM across all variants and degrees of distortions,
showcasing the robustness of this augmentation method. For example, across rotation,
shearing, translation and flip distortions, the improvement due to BG Swaps is ∼2-3× the
improvement due to BG RM in the respective strongest distortion levels; further, when the
foreground mask is replaced with a bounding-box mask, the benefit due to BG RM disappears,
while BG Swaps retains a significant performance benefit.

Among the SSL methods in our test bed, SwAV appears to be most robust to mask quality,
managing to maintain significant performance benefits even with strong mask distortion.
We speculate that this may be linked to use of multi-crop augmentation wherein local
crops are expected to be predictive of global crops. When background augmentations are
applied using distorted masks, only a small part of the foreground may be featured in a
view—much like a local crop in multi-crop augmentation.

B.1 Implementation Details.

Every mask was perturbed prior to background augmentations in every epoch. Rotation.
Each mask was subject to random rotation sampled between (−max rot.,+max rot.). Shear-
ing. Each mask was subject to shearing independently along x and y coordinates with a
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Figure A5: Mask Distortion: Shearing. Examples of varying distortion strength.

MoCo-v2 BYOL SwAV

Max
Shear baseline BG RM BG Swaps baseline BG RM baseline BG RM

0◦ 67.7 69.3 (+1.6) 69.7 (+2.0) 72.7 73.5 (+0.8) 72.2 73.7 (+1.5)
5◦ - 69.2 (+1.5) 69.3 (+1.6) - 73.2 (+0.5) - 73.5 (+1.3)
10◦ - 68.8 (+1.1) 69.2 (+1.5) - 73.5 (+0.8) - 73.6 (+1.4)
15◦ - 68.6 (+0.9) 69.4 (+1.7) - 73.0 (+0.3) - 73.5 (+1.3)
20◦ - 68.3 (+0.6) 69.0 (+1.3) - 73.2 (+0.5) - 73.4 (+1.2)
25◦ - 68.1 (+0.4) 68.9 (+1.2) - 72.9 (+0.2) - 73.5 (+1.3)

Table A2: Mask Distortion: Shearing. Background augmentations are robust to
substantial mask noise induced via shearing of the foreground mask. Of note,
BG Swaps maintains a large performance benefit even for strong distortions. We highlight
the ∆ relative to the baselines with no background augmentations.
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Figure A6: Mask Distortion: Translation. Examples of varying distortion strength.

MoCo-v2 BYOL SwAV

Max
Translation baseline BG RM BG Swaps baseline BG RM baseline BG RM

0% 67.7 69.3 (+1.6) 69.7 (+2.0) 72.7 73.5 (+0.8) 72.2 73.7 (+1.5)
5% - 68.9 (+1.2) 69.5 (+1.8) - 73.3 (+0.6) - 73.3 (+1.1)
10% - 68.7 (+1.0) 69.2 (+1.5) - 73.3 (+0.6) - 73.5 (+1.3)
15% - 68.2 (+0.5) 68.7 (+1.0) - 73.1 (+0.4) - 73.2 (+1.0)
20% - 68.0 (+0.3) 68.7 (+1.0) - 73.1 (+0.4) - 73.3 (+1.1)
25% - 67.9 (+0.2) 68.3 (+0.6) - 72.9 (+0.2) - 73.0 (+0.8)

Table A3: Mask Distortion: Translation. Background augmentations are robust
to substantial mask noise induced via translation of the foreground mask. Of
note, BG Swaps maintains a large performance benefit even for strong distortions. We
highlight the ∆ relative to the baselines with no background augmentations.

value uniformly sampled from (−max shear,+max shear). Translation. Each mask was
subject to translation independently along the width and height with values uniformly sam-
pled from (−max trans.,+max trans.)×max FG width and (−max trans.,+max trans.)×
max FG height respectively. Horizontal Flip. Each mask was horizontally flipped with a
probability 0.5 (on each use of the mask). Bounding-Box Masks. Binary foreground masks
were used to generate rectangular bounding-box masks of size max FG width × max FG
height.
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MoCo-v2 BYOL SwAV

Random
Horizontal Flip baseline BG RM BG Swaps baseline BG RM baseline BG RM

7 67.7 69.3 (+1.6) 69.7 (+2.0) 72.7 73.5 (+0.8) 72.2 73.7 (+1.5)
X - 68.7 (+1.0) 69.4 (+1.7) - 73.3 (+0.6) - 73.5 (+1.3)

Table A4: Mask Distortion: Horizontal Flip. Background augmentations are
robust to substantial mask noise induced via horizontal flip of the foreground
mask. Of note, BG Swaps maintains a large performance benefit even for strong distortions.
We highlight the ∆ relative to the baselines with no background augmentations.

Image

Saliency 

Mask

Bounding Box 

Mask

Selected as

"Foreground"

Figure A7: Mask Distortion: Bounding-Box Mask. An example of a bounding-box
mask.

MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM baseline BG RM

Saliency mask 67.7 69.3 (+1.6) 69.7 (+2.0) 72.7 73.5 (+0.8) 72.2 73.7 (+1.5)
Bounding-box mask - 67.8 (+0.1) 68.7 (+1.0) - 73.0 (+0.3) - 73.0 (+0.8)

Table A5: Mask Distortion: Bounding-Box Mask. BG Swaps is robust even to
replacing the mask with a bounding-box mask. Notably, SwAV also manages to
retain some performance benefit even in this extreme setting.
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Baseline (67.7) p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

BG RM 69.3 69.3 69.3 68.8 68.4
BG Random 69.1 69.2 68.6 67.8 66.8

Table A6: MoCo-v2: Ablating the strength of background augmentations BG RM and
BG Random.

Baseline (67.7) pneg = 0.1 pneg = 0.2 pneg = 0.3 pneg = 0.4 pneg = 0.5

ppos = 0.1 69.2 69.6 69.7 69.6 69.7
ppos = 0.2 69.5 69.7 69.5 69.5 69.7
ppos = 0.3 68.9 69.3 69.3 69.0 69.3

Table A7: MoCo-v2: Ablating the strength of background augmentation BG Swaps.

Appendix C. Ablations

Here, we report additional ablations of design choices and hyperparameter settings. We also
provide additional information regarding ablations in the main text. To control for mask
quality, we use U2Net to generate foreground masks unless otherwise indicated. We report
ImageNet accuracy.

C.1 Augmentation Strength

We ablate the strength of background augmentations and find that p ∈ [0.1, 0.3] is generally
a good setting. For MoCo-v2, as previously discussed, though BG RM is more (Out-of-
Distribution) OOD than BG Random, the presence of negatives in the queue Q with (gray)
backgrounds similar to q offsets this and results in better performance than BG Random across
all augmentation strengths, see Table A6.

As discussed in Section 4.4, BG Swaps overcomes the OOD issue of BG RM by using cached
random natural backgrounds in q and k+ with a probability ppos and additionally includes
an extra negative whose background matches q with a probability pneg. As can be seen
in Table A7, this results in substantially improved performance at each level of ppos over
the corresponding level of BG Random. Performance is more sensitive to ppos than to pneg
and ppos'pneg is generally a reasonable setting. Performance as a function of augmentation
strength for BYOL and SwAV are shown in Tables A8 and A9. In all of the above ablations,
FGmin = 0, i.e. no constraints were imposed on RRC regarding the foreground.

C.2 Do Multiple Matched Negatives Help?

We investigated using multiple background matched negatives in BG Swaps but found that
it did not confer further improvements in performance. We obtained 68.9% ImageNet
accuracy using 5 matched negatives vs. 68.8% using 1 matched negative, suggesting that
there may be little benefit to increasing the number of background matched negatives.
In these experiments, there were no background augmentations in q, only in k+ and k−;
ppos = pneg = 0.2 and background augmented negatives matched the background of k+.
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Baseline (72.7) p = 0.05 p = 0.1 p = 0.15 p = 0.2 p = 0.25

BG RM 73.7 73.6 73.8 73.5 73.1
BG Random 73.7 73.9 73.5 73.4 72.7

Table A8: BYOL: Ablating the strength of background augmentations BG RM and BG Random.

Baseline (72.2) p = 0.05 p = 0.1 p = 0.15 p = 0.2 p = 0.25 p = 0.3

BG RM 73.1 73.5 73.5 73.5 73.6 73.7
BG Random 73.0 73.2 73.2 73.7 70.9 67.2

Table A9: SwAV: Ablating the strength of background augmentations BG RM and BG Random.

C.3 Is it a Better Teaching Signal for Background Augmentations in the
Positive and Negative to be Independent or Coupled?

To answer this question, we contrasted independent background augmentations in BG Swaps in
k+ and k− with coupled background augmentations in k+ and k−. We observed identical
performance of 68.8% in each case. Other experiment settings as in C.2.

C.4 Is it Better for a Negative’s Background to Match q or k+?

We observed similar results in both cases a) background matches q (68.9%) and b) background
matches k+ (68.8%). Other experiment settings as in C.2.

C.5 Order of Augmentations

As noted in Section 2.2, by default, we apply background augmentations after all other
augmentations in the respective pipeline. Here, we show that background augmentation
before all other augmentations produces similar results. We apply BG Random in SwAV with
p = 0.1 and find corresponding accuracies of 73.4% (before) vs. 73.2% (after). Similarly,
applying BG RM with p = 0.1 in MoCo-v2, we find corresponding accuracies of 69.6% (before)
vs. 69.3% (after).

C.6 Influence of Random Crop

RandomResizedCrop (RRC) is a critical part of current SSL pipelines. Indeed, replacing RRC

with CenterCrop results in very poor accuracy, 26.8% for MoCo-v2, see Table A10 (b).
Concretely, instead of RRC, we first Resize to size 256 along the shorter edge of the image,
followed by a CenterCrop to size 224×224. Interestingly, using BG Swaps with CenterCrop

can substantially improve performance (c) over CenterCrop alone, though the performance is
still far reduced from using RRC. This raises an intriguing possibility: perhaps one role of RRC
is to bootstrap learning background invariance. Future work could potentially investigate
this hypothesis.

One effect of RRC is that only a little of the foreground may be present in a view. We
investigate the effect of including a lower bound on the amount of foreground included in a
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RRC CenterCrop BG Swaps ImageNet acc.

baseline X 67.7
(a) X X 69.2
(b) X 26.8
(c) X X 49.6

Table A10: Impact of RandomResizedCrop. RRC is critical for good performance in
current SSL pipelines. In MoCo-v2, replacing RRC with CenterCrop significantly hurts
performance, but application of BG Swaps somewhat helps compensate. Aug. Strength of
BG Swaps: ppos = pneg = 0.1.

Baseline (67.7) FGmin = 0 FGmin = 0.1 FGmin = 0.2

ppos = pneg = 0.1 69.2 69.7 69.4
ppos = pneg = 0.2 69.7 69.8 69.5

Table A11: Impact of including more foreground in views. Constraining RRC to
include more of the foreground in MoCo-v2, we see that it can be beneficial when the setting
of background augmentation (BG Swaps) strength is lower than optimal, but confers little (if
any) benefit on top of the optimal setting of background augmentation strength.

view. Concretely, we generate the parameters for RRC imposing one additional constraint:
that FGmin fraction of the foreground be present in the resulting crop. The foreground area
is obtained from the corresponding binary foreground mask. Thus, no constraint corresponds
to FGmin = 0. Too large a value of FGmin can be expected to hurt performance, since
it overly constrains RRC which is useful for inducing desirable invariances (e.g. occlusion
or scale invariance). Crop parameters are sampled in the standard way, defaulting to a
CenterCrop if the sampled RRC parameters are rejected 10 times.

We find that this strategy of imposing a foreground constraint can help when the setting
of background augmentation strength is lower than optimal, but it adds little benefit (if
any) on top of optimal settings, see Table A11. As another example, consider SwAV, where
BG RM (BG Random) results in an accuracy of 73.6% (73.7%) with FGmin = 0, see Table
A9. We find no benefit when we impose a constraint of FGmin = 0.15, with corresponding
accuracies for BG RM (BG Random) of 73.7% (73.5%), see Table 5.

C.7 Sensitivity of SwAV

Ease of Optimization. We observe that SwAV is more sensitive to high amount of
background augmentations when using using BG Random, with performance degrading less
gracefully than BYOL or MoCo-v2 when the strength of background augmentation is high.
We linked this behavior to the difficulty of the optimization task of learning invariance to
random natural backgrounds in conjunction with SwAV’s objective function. As discussed
in Section 4.6, this can be alleviated by increasing the capacity of the projection MLP
or by warming up the background augmentations, resulting in stable performance even
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at very strong augmentation strength, see Figure 4. We linearly warmed up background
augmentation strength over 10 epochs.

Crop Scale Ablation. Parametrizing the scale setting for local and global crops as
(0.05, s) and (s, 1), the default setting uses s = 0.14. As discussed in Section 4.6, we find
that increasing s can help improve performance when used in conjunction with background
augmentations. For BG RM (BG Random), we used s = 0.26 (s = 0.2). We used a 5 epoch
linear warmup of background augmentation strength. We found that increasing s to 0.2 for
the SwAV baseline, i.e. without background augmentations, results in failure—the loss at
the end of pre-training is at chance. The projection MLP capacity was set to 4096/256 in
all cases.

Temperature Sensitivity. We also note that we observed high sensitivity to the temper-
ature setting in SwAV, in contrast with MoCo-v2. Future work could investigate the source
of this sensitivity, potentially further improving performance.

General Settings. All ablations discussed here (Appendix C.7, Section 4.6) use defaults
for remaining settings except the experiments with the default projection MLP capacity
(2048/128)—these numbers are from the ablation of augmentation strength in Appendix
C.1.

C.8 Does BN Adaptation Help?

Due to strong augmentation during SSL pre-training, the statistics of images during pre-
training may be different from those in downstream application, e.g. linear evaluation on
ImageNet. Intuitively, one might expect that adapting BN statistics might result in improved
performance. Indeed, in the supervised setting, it has been shown (Schneider et al., 2020;
Nado et al., 2020) that adapting the batch normalization (BN) statistics under distribution
shift can result in improved performance. Here, we consider linear evaluation on ImageNet
with and without adaptation of BN statistics in the backbone. Specifically, for adaptation
(no adaptation), we use train (eval) mode for BN layers while training the linear classifier
and eval (eval) model during evaluation. Intriguingly, we find that adaptation does not
necessarily result in improved performance.

Note that no supervised information is used for BN adaptation. All parameters in the
backbone remain frozen to their pre-trained values. All models received full pre-training.
Background augmentations used DeepUSPS2.

C.9 Additional Information for Ablations in Main Text

Ablations in Tables 3, 4 follow the settings in Appendix C.1 and use FGmin = 0.

Appendix D. Additional Results

Here we report additional results, including downstream evaluations of corresponding
models which used U2Net for generating foreground masks—evaluations of these models are
consistent with evaluations of corresponding DeepUSPS2 models; we therefore skip detailed
discussions of these specific results.
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Method ImageNet acc.
w/o adapt. w/ adapt.

MoCo-v2 (repro.) 71.0 71.0
MoCo-v2 + BG RM 71.9 71.9
MoCo-v2 + BG Swaps 72.1 72.2
BYOL (repro.) 74.1 73.8
BYOL + BG RM 75.1 74.6
BYOL + BG Random 75.2 74.8
SwAV (repro.) 74.9 74.7
SwAV + BG RM 76.1 75.1
SwAV + BG Random 76.1 75.1

Table A12: Impact of Adapting BN Statistics. Adaptation does not necessarily result
in improved performance.

D.1 ImageNet-9

We expand on results in Table 10 in Table A14 to include SEM, which was excluded in
the main text to avoid clutter. These results correspond to medium duration pre-trained
models. We report corresponding results for the full duration pre-trained models in Table
A15. Corresponding tables for U2Net are Tables A16 and A17; for convenience, we report
also report corresponding BG-Gap in Table A18.

D.2 ImageNet-v2

Here, we report evaluation on all variants of ImageNet-v2: MatchedFrequency (MF), Thresh-
old0.7 (T0.7) and TopImages (TI). Background augmentations result in large performance
gains across all variants. Corresponding results for U2Net are shown in Table A20.

D.3 ImageNet-A

We expand on results in Table 14 in Table A22 to include evaluation on Only-FG ImageNet-A.
While we report these numbers for completeness, as discussed in Section 5.4, evaluation on
Only-FG ImageNet-A must be interpreted with caution, since this data set is also challenging
for saliency detection. Corresponding results for U2Net are shown in Table A23.

D.4 ImageNet-C

On ImageNet-C, we report the average performance on the four main categories of corruptions:
noise, blur, weather and digital, see Table A29. While background augmentations generally
result in improved robustness, they appear to decrease robustness to noise corruptions; this
may be due to difficulty discerning between the foreground and background due to the high
frequency noise added throughout the image.
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Method 1% Labels 10% Labels

Top-1 Top-5 Top-1 Top-5

Supervised 25.4 48.4 56.4 80.4

L
in

ea
r

MoCo-v2 (repro.) 52.0 77.7 63.9 85.8
MoCo-v2 + BG RM 54.4 (+2.4) 78.7 65.2 (+1.3) 86.3
MoCo-v2 + BG Swaps 56.4 (+4.4) 79.8 65.8 (+1.9) 86.5

BYOL (repro.) 57.5 80.8 68.6 88.6
BYOL + BG RM 60.8 (+3.3) 82.9 70.2 (+1.6) 89.3
BYOL + BG Random 61.0 (+3.5) 83.5 70.6 (+2.0) 89.6

SwAV (repro.) 52.8 78.4 68.3 88.7
SwAV + BG RM 57.6 (+4.8) 81.8 70.3 (+2.0) 89.8
SwAV + BG Random 56.4 (+3.6) 80.8 70.3 (+2.0) 89.8

F
in

et
u

n
e

MoCo-v2 (repro.) 54.1 81.3 67.6 89.4
MoCo-v2 + BG RM 55.3 (+1.2) 81.4 68.0 (+0.4) 89.3
MoCo-v2 + BG Swaps 57.7 (+3.6) 82.7 68.8 (+1.2) 89.6

BYOL (repro.) 57.3 80.5 70.6 90.0
BYOL + BG RM 60.5 (+3.2) 82.6 71.7 (+1.1) 90.6
BYOL + BG Random 60.7 (+3.4) 83.1 71.9 (+1.3) 90.8

SwAV (repro.) 54.0 78.5 70.1 89.9
SwAV + BG RM 54.7 (+0.7) 78.9 70.7 (+0.6) 90.2
SwAV + BG Random 55.7 (+1.7) 79.3 70.8 (+0.7) 90.2

Table A13: Limited-Labels Setting. Background augmentations improve performance
in the limited-labels setting. Linear evaluation using 100% of ImageNet labels though a
standard benchmark, is a somewhat unrealistic setting. Evaluation in the more practical
setting of limited-labels reveals even larger improvement in performance. We highlight
performance gains due to background augmentations. Similar to Table 6, but U2Net was
used for foreground extraction. Best (second best) results are in bold (underlined).
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Data Set Supervised MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

Original 95.6 92.7 93.8 94.2 94.9 95.6 96.0 94.1 95.0 94.9
Only-BG-B ↓ 11.4 6.1 6.1 3.6 5.4 4.9 6.0 10.9 8.8 8.3
Only-BG-T ↓ 16.3 14.8 12.9 9.3 12.7 11.8 11.5 15.8 16.7 17.6
No-FG 45.9 37.8 42.3 39.6 43.9 45.9 46.2 41.3 44.2 45.2
Only-FG ↑ 86.8 74.4 81.9±0.1 (+7.5) 86.1±0.4 (+11.7) 83.5 88.8±0.1 (+5.3) 87.7±0.6 (+4.2) 79.4 85.3±0.1 (+5.9) 84.3±0.2 (+4.9)
Mixed-Same ↑ 86.2 81.8 84.0±0.1 (+2.2) 87.9±0.3 (+6.1) 86.2 88.6±0.2 (+2.4) 90.1±0.1 (+3.9) 82.2 86.1±0.3 (+3.9) 86.3±0.2 (+4.1)
Mixed-Rand ↑ 78.9 70.7 76.3±0.2 (+5.6) 84.1±0.3 (+13.4) 79.6 83.2±0.1 (+3.6) 85.5±0.3 (+5.9) 71.3 77.1±0.3 (+5.8) 77.0±0.3 (+5.7)
Mixed-Next ↑ 77.2 67.0 73.0±0.1 (+6.0) 82.2±0.4 (+15.2) 77.6 80.7±0.1 (+3.1) 84.0±0.1 (+6.4) 69.0 74.3±0.2 (+5.3) 74.4±0.2 (+5.4)

Table A14: Robustness: Foreground-Background Shifts. Background augmentations
result in large performance gains on ImageNet-9 (IN-9) across all SSL methods, with
BG Swaps generally exhibiting similar or better performance than BG RM. We highlight the
performance benefit on the variants of IN-9 especially relevant to our work. All pre-training
durations correspond to respective medium settings. Note that IN-9 uses only 9 classes, so
chance is ∼11.1%. This table is an expanded version of Table 10, to include SEM which
were excluded in the main text to avoid clutter.

Data Set Supervised MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

Original 95.6 94.7 94.9 95.3 95.2 95.8 95.7 94.6 95.4 95.1
Only-BG-B ↓ 11.4 7.9 6.3 5.1 7.1 5.8 6.0 11.4 10.5 10.9
Only-BG-T ↓ 16.3 14.7 13.9 11.1 16.5 13.0 14.1 19.2 18.3 18.0
No-FG 45.9 42.3 43.5 42.6 42.7 46.5 47.5 46.0 47.4 43.5
Only-FG ↑ 86.8 79.7 85.2 (+5.5) 86.9 (+7.2) 81.4 88.5 (+7.1) 87.3 (+5.9) 81.9 84.1 (+2.2) 83.2 (+1.3)
Mixed-Same ↑ 86.2 84.9 85.8 (+0.9) 89.7 (+4.8) 86.7 89.2 (+2.5) 90.2 (+3.5) 84.3 86.0 (+1.7) 85.5 (+1.2)
Mixed-Rand ↑ 78.9 74.9 79.0 (+4.1) 85.3 (+10.4) 77.6 83.9 (+6.3) 85.8 (+8.2) 72.9 76.7 (+3.8) 76.5 (+3.9)
Mixed-Next ↑ 77.2 72.9 76.0 (+3.1) 82.7 (+9.8) 75.7 82.0 (+6.3) 84.1 (+8.4) 70.2 74.5 (+4.3) 73.1 (+2.9)

Table A15: Robustness: Foreground-Background Shifts. Background augmentations
result in large performance gains on ImageNet-9 (IN-9) across all SSL methods, with
BG Swaps generally exhibiting similar or better performance than BG RM. We highlight the
performance benefit on the variants of IN-9 especially relevant to our work. All pre-training
durations correspond to respective full settings. Note that IN-9 uses only 9 classes, so chance
is ∼11.1%.

Data Set Supervised MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

Original 95.6 92.7 94.1 94.4 94.9 95.8 95.9 94.1 94.8 94.7
Only-BG-B ↓ 11.4 6.1 7.2 4.2 5.4 4.9 5.8 10.9 8.5 8.7
Only-BG-T ↓ 16.3 14.8 13.8 10.7 12.7 12.0 12.2 15.8 16.6 17.2
No-FG 45.9 37.8 43.5 41.7 43.9 46.5 46.2 41.3 46.1 45.3
Only-FG ↑ 86.8 74.4 83.6±0.3 (+9.2) 85.4±0.1 (+11) 83.5 89.3±0.5 (+5.8) 87.6±0.4 (+4.1) 79.4 85.4±0.2 (+6.0) 85.3±0.2 (+5.9)
Mixed-Same ↑ 86.2 81.8 85.6±0.2 (+3.8) 88.2±0.2 (+6.4) 86.2 89.0±0.3 (+2.8) 90.4±0.3 (+4.2) 82.2 86.0±0.4 (+3.8) 86.1±0.1 (+3.9)
Mixed-Rand ↑ 78.9 70.7 78.2±0.2 (+7.5) 83.6±0.2 (+12.9) 79.6 83.8±0.1 (+4.2) 85.3±0.2 (+5.7) 71.3 76.7±0.1 (+5.4) 76.8±0.3 (+5.5)
Mixed-Next ↑ 77.2 67.0 75.2±0.1 (+8.2) 81.2±0.2 (+14.2) 77.6 81.7±0.1 (+4.1) 83.5±0.3 (+5.9) 69.0 73.8±0.4 (+4.8) 74.1±0.2 (+5.1)

Table A16: Robustness: Foreground-Background Shifts. Background augmentations
result in large performance gains on ImageNet-9 (IN-9) across all SSL methods, with
BG Swaps generally exhibiting similar or better performance than BG RM. We highlight the
performance benefit on the variants of IN-9 especially relevant to our work. All pre-training
durations correspond to respective medium settings. Note that IN-9 uses only 9 classes, so
chance is ∼11.1%. Similar to Table A14, but U2Net was used for FG extraction.
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Data Set Supervised MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

Original 95.6 94.7 94.8 95.2 95.2 96.1 96.1 94.6 95.3 95.4
Only-BG-B ↓ 11.4 7.9 8.1 3.4 7.1 4.8 6.2 11.4 10.3 13.6
Only-BG-T ↓ 16.3 14.7 14.2 11.4 16.5 13.8 12.9 19.2 18.2 18.6
No-FG 45.9 42.3 45.5 43.0 42.7 47.9 48.1 46.0 46.8 44.9
Only-FG ↑ 86.8 79.7 87.1 (+7.4) 87.5 (+7.8) 81.4 89.1 (+7.7) 88.3 (+6.9) 81.9 86.8 (+4.9) 83.8 (+1.9)
Mixed-Same ↑ 86.2 84.9 87.1 (+2.2) 89.6 (+4.7) 86.7 89.5 (+2.8) 90.2 (+3.5) 84.3 87.0 (+2.7) 86.9 (+2.6)
Mixed-Rand ↑ 78.9 74.9 80.7 (+5.8) 85.2 (+10.3) 77.6 84.2 (+6.6) 85.2 (+7.6) 72.9 77.1 (+4.2) 76.6 (+3.7)
Mixed-Next ↑ 77.2 72.9 78.1 (+5.2) 83.2 (+10.3) 75.7 81.7 (+6.0) 83.8 (+8.1) 70.2 75.6 (+5.4) 74.3 (+4.1)

Table A17: Robustness: Foreground-Background Shifts. Background augmentations
result in large performance gains on ImageNet-9 (IN-9) across all SSL methods, with
BG Swaps generally exhibiting similar or better performance than BG RM. We highlight the
performance benefit on the variants of IN-9 especially relevant to our work. All pre-training
durations correspond to respective full settings. Note that IN-9 uses only 9 classes, so chance
is ∼11.1%. Similar to Table A15, but U2Net was used for FG extraction.

Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

Med. 11.1 7.4 (-3.7) 4.6 (-6.5) 6.6 5.2 (-1.4) 5.1 (-1.5) 10.9 9.3 (-1.6) 9.3 (-1.6)
Full 10.0 6.4 (-3.6) 4.4 (-5.6) 9.1 5.3 (-3.8) 5.0 (-4.1) 11.4 9.9 (-1.5) 10.3 (-1.1)

Table A18: BG-Gap: Background augmentations decrease BG-Gap of SSL Methods.
Similar to Table 11, but U2Net was used for FG extraction.
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Method ImageNet-v2 acc.
MF T0.7 TI

Supervised 63.8 72.6 77.7

Pre-Train Duration: Medium
MoCo-v2 (repro.) 54.7 63.6 69.6
MoCo-v2 + BG RM 56.7±0.1 (+2.0) 65.7±0.1 (+2.1) 71.5±0.1 (+1.9)
MoCo-v2 + BG Swaps 57.2±0.1 (+2.5) 66.3±0.1 (+2.7) 72.0±0.2 (+2.4)
BYOL (repro.) 60.7 70.2 75.6
BYOL + BG RM 61.7±0.2 (+1.0) 71.0±0.2 (+0.8) 76.3±0.2 (+0.7)
BYOL + BG Random 62.1±0.1 (+1.4) 71.5±0.0 (+1.3) 76.7±0.1 (+1.1)
SwAV (repro.) 59.3 68.5 73.9
SwAV + BG RM 61.2±0.3 (+1.9) 70.3±0.1 (+1.8) 75.6±0.1 (+1.7)
SwAV + BG Random 60.7±0.0 (+1.4) 70.0±0.2 (+1.5) 75.3±0.1 (+1.4)

Pre-Train Duration: Full
MoCo-v2 (repro.) 58.9 67.4 73.1
MoCo-v2 + BG RM 59.6 (+0.7) 68.7 (+1.3) 74.2 (+1.1)
MoCo-v2 + BG Swaps 60.3 (+1.4) 68.8 (+1.4) 74.9 (+1.8)
BYOL (repro.) 61.9 71.2 76.2
BYOL + BG RM 63.4 (+1.5) 72.4 (+1.2) 77.7 (+1.5)
BYOL + BG Random 62.8 (+0.9) 72.4 (+1.2) 77.2 (+1.0)
SwAV (repro.) 61.7 70.8 76.4
SwAV + BG RM 63.8 (+2.1) 72.8 (+2.0) 77.9 (+1.5)
SwAV + BG Random 63.4 (+1.7) 72.3 (+1.5) 77.9 (+1.5)

Table A19: Robustness: Natural Distribution Shift. Expanded version of Table 12.
Background augmentations improve performance on all variants of ImageNet-v2. Notably,
background augmentations enable SwAV to perform on par with the standard supervised
baseline. Best results are in bold. Notation: MF=MatchedFrequency, T0.7=Threshold0.7,
TI=TopImages. Results in Table 12 correspond to MF and are included here for completeness.
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Method ImageNet-v2 acc.
MF T0.7 TI

Supervised 63.8 72.6 77.7

Pre-Train Duration: Medium
MoCo-v2 (repro.) 54.7 63.6 69.6
MoCo-v2 + BG RM 57.0±0.1 (+2.3) 66.2±0.2 (+2.6) 71.8±0.1 (+2.2)
MoCo-v2 + BG Swaps 57.6±0.0 (+2.9) 66.5±0.2 (+2.9) 72.3±0.1 (+2.7)
BYOL (repro.) 60.7 70.2 75.6
BYOL + BG RM 62.2±0.2 (+1.5) 71.3±0.1 (+1.1) 76.5±0.1 (+0.9)
BYOL + BG Random 62.2±0.4 (+1.5) 71.5±0.1 (+1.3) 76.6±0.2 (+1.0)
SwAV (repro.) 59.3 68.5 73.9
SwAV + BG RM 61.2±0.1 (+1.9) 70.2±0.2 (+1.7) 75.4±0.1 (+1.5)
SwAV + BG Random 61.0±0.3 (+1.7) 69.9±0.2 (+1.4) 75.4±0.1 (+1.5)

Pre-Train Duration: Full
MoCo-v2 (repro.) 58.9 67.4 73.1
MoCo-v2 + BG RM 60.2 (+1.3) 69.2 (+1.8) 74.6 (+1.5)
MoCo-v2 + BG Swaps 60.5 (+1.6) 69.3 (+1.9) 75.1 (+2.0)
BYOL (repro.) 61.9 71.2 76.2
BYOL + BG RM 62.9 (+1.0) 72.2 (+1.0) 77.5 (+1.3)
BYOL + BG Random 63.2 (+1.3) 71.9 (+0.7) 77.1 (+0.9)
SwAV (repro.) 61.7 70.8 76.4
SwAV + BG RM 63.7 (+2.0) 73.1 (+2.3) 78.2 (+1.8)
SwAV + BG Random 63.5 (+1.8) 72.4 (+1.6) 77.7 (+1.3)

Table A20: Robustness: Natural Distribution Shift. Background augmentations
improve performance on all variants of ImageNet-v2. Notably, background augmentations
enable SwAV to perform on par with the standard supervised baseline. Best results are in
bold. Notation: MF=MatchedFrequency, T0.7=Threshold0.7, TI=TopImages. Similar to
Table A19, but U2Net was used for FG extraction.

Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

Med. 14.4 17.1±0.3 (+2.7) 18.5±0.3 (+4.1) 20.4 22.9±0.2 (+2.5) 22.4±0.1 (+2.0) 16.1 19.0±0.3±0.1 (+2.9) 18.3±0.2 (+2.2)
Full 17.4 20.2 (+2.8) 21.9 (+4.5) 20.8 24.3 (+3.5) 23.7 (+2.9) 19.3 23.1 (+3.8) 21.2 (+1.9)

Table A21: Robustness: Rotation, Viewpoint, Background Shift. Background
augmentations improve performance on ObjectNet, a challenging test set that controls object
orientation, viewpoint and background. Similar to Table 13, but U2Net was used for FG
extraction.
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Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

ImageNet-A
Med. 3.1 3.3±0.1 (+0.2) 3.6±0.1 (+0.5) 4.4 5.8±0.3 (+1.4) 6.1±0.1 (+1.7) 3.7 4.2±0.1 (+0.5) 4.1±0.1 (+0.4)
Full 4.2 4.7 (+0.5) 5.3 (+1.1) 5.3 7.2 (+1.9) 7.2 (+1.9) 5.2 6.0 (+0.8) 5.7 (+0.5)

Only-FG ImageNet-A
Med. 2.8 2.8±0.0 (+0.0) 4.2±0.1 (+1.4) 3.2 4.8±0.1 (+1.6) 4.7±0.2 (+1.5) 2.7 4.0±0.1 (+1.3) 3.5±0.1 (+0.8)
Full 3.4 3.1 (-0.3) 4.7 (+1.3) 3.1 5.8 (+2.7) 5.1 (+2.0) 3.9 4.0 (+0.1) 3.8 (-0.1)

Table A22: Robustness: Natural Adversarial Examples. Background augmentations
improve performance on ImageNet-A, a data set of natural adversarial examples. Interestingly,
the performance of all SSL methods drops when presented with only foreground, but
background augmentations provide some robustness against this distribution shift as well.
Similar to Table 14, but expanded to include only FG ImageNet-A.

Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

ImageNet-A
Med. 3.1 3.4±0.1 (+0.3) 3.9±0.0 (+0.8) 4.4 6.0±0.2 (+1.6) 6.3±0.1 (+1.9) 3.7 4.1±0.0 (+0.4) 4.1±0.1 (+0.4)
Full 4.2 4.8 (+0.4) 5.4 (+1.2) 5.3 7.4 (+2.1) 7.1 (+1.8) 5.2 6.1 (+0.9) 6.1 (+0.9)

Only-FG ImageNet-A
Med. 2.8 3.2±0.3 (+0.4) 4.4±0.1 (+1.6) 3.2 4.9±0.2 (+1.7) 4.8±0.2 (+1.6) 2.7 4.0±0.1 (+1.3) 3.6±0.1 (+0.9)
Full 3.4 4.3 (+0.9) 4.6 (+1.2) 3.1 5.9 (+2.8) 5.0 (+1.9) 3.9 4.7 (+0.8) 4.0 (+0.1)

Table A23: Robustness: Natural Adversarial Examples. Background augmentations
improve performance on ImageNet-A, a data set of natural adversarial examples. Interestingly,
the performance of all SSL methods drops when presented with only foreground, but
background augmentations provide some robustness against this distribution shift as well.
Similar to Table A22, but U2Net was used for FG extraction.

Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

Med. 27.7 31.1±0.4 (+3.4) 32.3±0.1 (+4.6) 36.3 39.7±0.1 (+3.4) 38.4±0.1 (+2.1) 27.9 32.0±0.2 (+4.1) 31.4±0.1 +3.5)
Full 30.4 33.4 (+3.0) 34.2 (+3.8) 34.4 40.5 (+6.1) 39.7 (+5.3) 29.4 33.6 (+4.2) 32.5 (+3.1)

Table A24: Robustness: Renditions. Background augmentations improve performance
on ImageNet-R, a data set of ImageNet-Renditions (e.g. paintings, sculpture). Similar to
Table 15, but U2Net was used for FG extraction.

Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

Med. 4.5 6.0±0.1 (+1.5) 8.6±0.2 (+4.1) 10.6 11.7±0.2 (+1.1) 11.6±0.2 (+1.0) 6.0 6.4±0.0 (+0.4) 6.7±0.1 (+0.7)
Full 7.8 10.1 (+2.3) 12.6 (+4.8) 10.4 13.7 (+3.3) 13.5 (+3.1) 9.1 10.2 (+1.1) 10.5 (+1.4)

Table A25: Robustness: Adversarial Attack. Background augmentations increase
robustness to FGSM adversarial attacks. Similar to Table 16, but U2Net was used for FG
extraction.

55



Ryali, Schwab and Morcos

Data Set MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

CIFAR-10 73.9 80.3 (+6.4) 77.5 (+3.6) 86.7 88.5 (+1.8) 87.9 (+1.2) 92.7 93.3 (+0.6) 93.3 (+0.6)
CIFAR-100 40.8 51.4 (+10.6) 46.3 (+5.5) 67.6 68.2 (+0.6) 67.1 (-0.5) 76.0 77.3 (+1.3) 76.8 (+0.8)

Table A26: CIFAR-10, 100. Background augmentations improve performance on linear
evaluation on CIFAR-10 and 100. Similar to Table 17, but U2Net was used for FG extraction.

VOC 07+12 detection COCO detection COCO instance seg.

Method AP50 AP AP75 AP50 AP AP75 APm50 APm APm75

MoCo-v2(repro.) 82.7±0.0 57.9±0.0 64.5±0.1 61.0 41.1 44.8 57.7 35.8 38.4
MoCo-v2+ BG RM 82.6±0.1 57.6±0.1 64.5±0.2 60.9 41.2 44.8 57.8 35.9 38.5

MoCo-v2+ BG Swaps 82.7±0.0 57.4±0.2 64.0±0.3 61.2 41.4 44.8 58.0 36.0 38.3

BYOL (repro.) 82.7±0.1 56.7±0.1 63.0±0.3 61.1 40.9 44.5 57.6 35.5 37.8
BYOL + BG RM 83.0±0.1 57.0±0.1 63.9±0.2 61.5 41.1 44.3 57.8 35.5 37.8

BYOL + BG Random 83.2±0.1 57.4±0.1 64.1±0.2 61.7 41.4 44.7 57.9 35.7 37.8

SwAV (repro.) 82.3±0.1 55.6±0.0 61.9±0.2 61.4 40.7 43.7 57.6 35.4 37.4
SwAV + BG RM 82.6±0.0 55.8±0.1 62.0±0.1 61.2 40.6 43.8 57.4 35.1 37.0

SwAV + BG Random 82.5±0.1 56.0±0.1 62.7±0.1 61.2 40.8 44.3 57.7 35.5 37.6

Table A27: Detection and Instance Segmentation. Background Augmentations result
in small improvements in detection and instance segmentation tasks, likely due to extensive
supervision involved in subsequent training. All VOC metrics reported are average of 3
independent runs. Similar to Table 19, but U2Net was used for FG extraction.

Supervised MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

22.1 28.8 32.3 31.9 27.6 31.7 29.1 17.0 20.1 17.4

Table A28: Background augmentations increase shape bias. SSL methods considered
generally have a higher shape bias than the supervised baseline. SwAV deviates from this
pattern due to multi-crop (SwAV w/o multi-crop shape bias: 27.4). Similar to Table 20,
but U2Net was used for FG extraction.

56



Background Augmentations for Self-Supervised Learning

Corruption MoCo-v2 BYOL SwAV

baseline BG RM BG Swaps baseline BG RM BG Random baseline BG RM BG Random

Saliency Method: DeepUSPS 2

Noise 30.3 25.9 (-4.4) 30.6 (+0.3) 34.6 28.3 (-6.3) 30.2 (-4.4) 33.0 32.6 (-0.4) 33.3 (+0.3)
Blur 27.1 28.2 (+1.1) 27.9 (+0.8) 31.3 32.4 (+1.1) 33.0 (+1.7) 31.3 33.0 (+1.7) 32.8 (+1.5)

Weather 40.1 41.7 (+1.6) 42.3 (+2.2) 43.6 47.7 (+4.1) 47.3 (+3.7) 43.7 46.2 (+2.5) 45.5 (+1.8)
Digital 45.9 45.0 (-0.9) 44.2 (-1.7) 48.9 49.7 (+0.8) 49.4 (+0.5) 46.8 48.6 (+1.8) 48.7 (+1.9)

Saliency Method: U 2Net
Noise 30.3 30.3 (+0.0) 33.1 (+2.8) 34.6 29.3 (-5.3) 31.8 (-2.8) 33.0 31.8 (-1.2) 30.5 (-2.5)
Blur 27.1 27.8 (+0.7) 27.7 (+0.6) 31.3 32.4 (+1.1) 32.8 (+1.5) 31.3 32.7 (+1.4) 33.1 (+1.8)

Weather 40.1 41.6 (+1.5) 42.5 (+2.4) 43.6 47.6 (+4.0) 47.7 (+4.1) 43.7 46.7 (+3.0) 45.5 (+1.8)
Digital 45.9 46.2 (+0.3) 45.5 (-0.4) 48.9 50.3 (+1.4) 50.6 (+1.7) 46.8 48.6 (+1.8) 49.0 (+2.2)

Table A29: Robustness: Corruptions. Background augmentations generally improve
robustness to corruptions in ImageNet-C. We observe that across methods, robustness to
added noise (e.g. Gaussian, Speckle) is reduced as a result of background augmentations,
while there is improved robustness to blur, weather and digital corruptions. This maybe due
to difficulty discerning between the foreground and background due to the high frequency
noise added throughout the image. All models received full pre-training.
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Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32, pages 125–136. Curran Associates, Inc., 2019.

61



Ryali, Schwab and Morcos

S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. In International Conference on Machine Learning,
pages 448–456, 2015.

X. Ji, J. F. Henriques, and A. Vedaldi. Invariant Information Clustering for Unsupervised
Image Classification and Segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019.

L. Jing and Y. Tian. Self-supervised visual feature learning with deep neural networks: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

J. Jo and Y. Bengio. Measuring the tendency of cnns to learn surface statistical regularities.
arXiv preprint arXiv:1711.11561, 2017.

Y. Kalantidis, M. B. Sariyildiz, N. Pion, P. Weinzaepfel, and D. Larlus. Hard negative
mixing for contrastive learning. In Neural Information Processing Systems (NeurIPS),
2020.

A. Kolesnikov, X. Zhai, and L. Beyer. Revisiting Self-Supervised Visual Representation
Learning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2019.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep Con-
volutional Neural Networks. In Advances in Neural Information Processing Systems,
2012.

A. Kurakin, I. J. Goodfellow, and S. Bengio. Adversarial examples in the physical world.
ICLR 2017 Workshop, Nov. 2016.

C. Li, J. Yang, P. Zhang, M. Gao, B. Xiao, X. Dai, L. Yuan, and J. Gao. Effi-
cient Self-supervised Vision Transformers for Representation Learning. arXiv preprint
arXiv:2106.09785, June 2021a.

J. Li, P. Zhou, C. Xiong, and S. Hoi. Prototypical Contrastive Learning of Unsupervised
Representations. In International Conference on Learning Representations, 2021b.

X. Li, L. Zhao, L. Wei, M.-H. Yang, F. Wu, Y. Zhuang, H. Ling, and J. Wang. Deepsaliency:
Multi-task deep neural network model for salient object detection. IEEE transactions on
Image Processing, 25(8):3919–3930, 2016. Publisher: IEEE.

T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, and H.-Y. Shum. Learning to Detect
a Salient Object. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33
(2):353–367, Feb. 2011. ISSN 1939-3539. doi: 10.1109/TPAMI.2010.70.

I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient descent with warm restarts. In
International Conference on Learning Representations, 2017.

Z. Luo, A. Mishra, A. Achkar, J. Eichel, S. Li, and P.-M. Jodoin. Non-local deep features
for salient object detection. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6609–6617, 2017.

62



Background Augmentations for Self-Supervised Learning

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models
resistant to adversarial attacks. In International Conference on Learning Representations,
2018.

S. Marcel and Y. Rodriguez. Torchvision the machine-vision package of torch. In Proceedings
of the 18th ACM International Conference on Multimedia, 2010.

I. Misra and L. van der Maaten. Self-supervised learning of pretext-invariant representations.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2020.

Z. Nado, S. Padhy, D. Sculley, A. D’Amour, B. Lakshminarayanan, and J. Snoek. Evaluating
prediction-time batch normalization for robustness under covariate shift. arXiv preprint
arXiv:2006.10963, 2020.

D. T. Nguyen, M. Dax, C. K. Mummadi, T. P. N. Ngo, T. H. P. Nguyen, Z. Lou, and
T. Brox. Deepusps: Deep robust unsupervised saliency prediction with self-supervision.
arXiv preprint arXiv:1909.13055, 2019.

M. Noroozi and P. Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In European Conference on Computer Vision. Springer, 2016.

A. v. d. Oord, Y. Li, and O. Vinyals. Representation Learning with Contrastive Predictive
Coding. arXiv:1807.03748 [cs, stat], Jan. 2018.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An
imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle,
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