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Abstract

The success of lottery ticket initializations [7] suggests that small, sparsified net-
works can be trained so long as the network is initialized appropriately. Unfortu-
nately, finding these “winning ticket” initializations is computationally expensive.
One potential solution is to reuse the same winning tickets across a variety of
datasets and optimizers. However, the generality of winning ticket initializations
remains unclear. Here, we attempt to answer this question by generating winning
tickets for one training configuration (optimizer and dataset) and evaluating their
performance on another configuration. Perhaps surprisingly, we found that, within
the natural images domain, winning ticket initializations generalized across a vari-
ety of datasets, including Fashion MNIST, SVHN, CIFAR-10/100, ImageNet, and
Places365, often achieving performance close to that of winning tickets generated
on the same dataset. Moreover, winning tickets generated using larger datasets
consistently transferred better than those generated using smaller datasets. We
also found that winning ticket initializations generalize across optimizers with
high performance. These results suggest that winning ticket initializations contain
inductive biases generic to neural networks more broadly which improve training
across many settings and provide hope for the development of better initialization
methods.

1 Introduction

The recently proposed lottery ticket hypothesis [7, 8] argues that the initialization of over-
parameterized neural networks contains much smaller sub-network initializations, which, when
trained in isolation, reach similar performance as the full network. The presence of these “lucky”
sub-network initializations has several intriguing implications. First, it suggests that the most com-
monly used initialization schemes, which have primarily been discovered heuristically [10, 14], are
sub-optimal and have significant room to improve. This is consistent with work which suggests that
theoretically-grounded initialization schemes can enable the training of extremely deep networks
with hundreds of layers [13, 27, 29, 33, 35]. Second, it suggests that over-parameterization is not
necessary during the course of training as has been argued previously [1, 2, 5, 6, 24, 25], but rather
over-parameterization is merely necessary to find a “good” initialization of an appropriately parame-
terized network. If this hypothesis is true, it indicates that by training and performing inference in
networks which are 1-2 orders of magnitude larger than necessary, we are wasting large amounts of
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computation. Taken together, these results hint toward the development of a better, more principled
initialization scheme.

However, the process to find winning tickets requires repeated cycles of alternating training (poten-
tially large) models from scratch to convergence and pruning, making winning tickets computationally
expensive to find. Moreover, it remains unclear whether the properties of winning tickets which lead
to high performance are specific to the precise combination of architecture, optimizer, and dataset,
or whether winning tickets contain inductive biases which improve training more generically. This
is a critical distinction for evaluating the future utility of winning ticket initializations: if winning
tickets are overfit to the dataset and optimizer with which they were generated, a new winning ticket
would need to be generated for each novel dataset which would require training of the full model and
iterative pruning, significantly blunting the impact of these winning tickets. In contrast, if winning
tickets feature more generic inductive biases such that the same winning ticket generalizes across
training conditions and datasets, it unlocks the possibility of generating a small number of such
winning tickets and reusing them across datasets. Further, it hints at the possibility of parameterizing
the distribution of such tickets, allowing us to sample generic, dataset-independent winning tickets.

Here, we investigate this question by asking whether winning tickets found in the context of one
dataset improve training of sparsified models on other datasets as well. We demonstrate that individual
winning tickets which improve training across many natural image datasets can be found, and that,
for many datasets, these transferred winning tickets performed almost as well as (and in some cases,
better than) dataset-specific initializations. We also show that winning tickets generated by larger
datasets (both with more training samples and more classes) generalized across datasets substantially
better than those generated by small datasets. Finally, we find that winning tickets can also generalize
across optimizers, confirming that dataset- and optimizer-independent winning ticket initializations
can be generated.

2 Related work

Our work is most directly inspired by the lottery ticket hypothesis, which argues that the probability
of sampling a lucky, trainable sub-network initialization grows with network size due to the com-
binatorial explosion of available sub-network initializations. The lottery ticket hypothesis was first
postulated and examined in smaller models and datasets in [7] and analyzed in large models and
datasets, leading to the development of late resetting, in [8]. The lottery ticket hypothesis has recently
been challenged by [20], which argued that, if randomly initialized sub-networks with structured
pruning are scaled appropriately and trained for long enough, they can match performance from
winning tickets. [9] also evaluated the lottery ticket hypothesis in the context of large-scale models
and were unable to find successful winning tickets, although, critically, they did not use iterative
pruning and late resetting, both of which have been found to be necessary to induce winning tickets in
large-scale models. However, all of these studies have only investigated situations in which winning
tickets are evaluated in an identical setting to that in which they generated, and therefore do not
measure the generality of winning tickets.

This work is also strongly inspired by the model pruning literature as well, as the choice of pruning
methodology can have large impacts on the structure of the resultant winning tickets. In particular,
we use magnitude pruning, in which the lowest magnitude weights are pruned first, which was first
proposed by [12]. A number of variants have been proposed as well, including structured variants
[19] and those which enable pruned weights to recover during training [11, 37]. Many other pruning
methods have been proposed, including greedy methods [22], methods based on variational dropout
[21], and those based on the similarity between the activations of feature maps [3, 28].

Transfer learning has been studied extensively with many studies aiming to transfer learned represen-
tations from one dataset to another [17, 31, 34, 38]. Pruning has also been analyzed in the context
of transfer learning, primarily by fine-tuning pruned networks on novel datasets and tasks [22, 37].
These results have demonstrated that training models on one dataset, pruning, and then fine-tuning on
another datasets can often result in high performance on the transfer dataset. However, in contrast
to the present work, these studies investigate the transfer of learned representations, whereas we
analyze the transfer of initializations across datasets.
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Figure 1: Global vs. layerwise pruning. (a) CIFAR-10 winning ticket performance for global pruning (blue)
vs. layerwise pruning (red) along with a random ticket (red). Error bars represent mean ± standard deviation
across six random seeds. (b) Ratio of global pruning rate to layerwise pruning rate at each convolutional layer
in VGG19. Level represents the pruning iteration such that lighter blues represent lower overall pruning rates,
while the darkest blue represents a 0.999 overall pruning rate.

3 Approach

3.1 The lottery ticket hypothesis

The lottery ticket hypothesis proposes that "lucky" sub-network initializations are present within the
initializations of over-parameterized networks which, when trained in isolation, can reach the same
or, in some cases, better test accuracy than the full model, even when over 99% of the parameters
have been removed [8]. This effect is also present for large-scale models trained on ImageNet,
suggesting that this phenomenon is not specific to small models [7]. In the simplest method to
find and evaluate winning tickets, models are trained to convergence, pruned, and then the set of
remaining weights are reset to their value at the start of training. This smaller model is then trained to
convergence again (“winning ticket”) and compared to a model with the same number of parameters
but randomly drawn initial parameter values (“random ticket”). A good winning ticket is one which
significantly outperform random tickets. However, while this straightforward approach finds good
winning tickets for simple models and datasets (e.g., MLPs trained on MNIST), this method fails for
more complicated architectures and datasets, which require several “tricks” to generate good winning
tickets:

Iterative pruning When models are pruned, they are typically pruned according to some criterion
(see related work for more details). While these pruning criteria can often be effective, they are
only rough estimates of weight importance, and are often noisy. As such, pruning a large fraction of
weights in one step (“one-shot pruning”) will often prune weights which were actually important.
One strategy to combat this issue is to instead perform many iterations of alternately training and
pruning, with each iteration pruning only a small fraction of weights [12]. By only pruning a small
fraction of weights on each iteration, iterative pruning helps to de-noise the pruning process, and
produces substantially better pruned models and winning tickets [7, 8]. For this work, we used
magnitude pruning with an iterative pruning rate of 20% of remaining parameters.

Late resetting In the initial investigation of lottery tickets, winning ticket weights were reset to
their values at the beginning of training (training iteration 0), and learning rate warmup was found
to be necessary for winning tickets on large models [8]. However, in follow-up work, Frankle and
Carbin [7] found that simply resetting the winning ticket weights to their values at training iteration k,
with k much smaller than the number of total training iterations consistently produces better winning
tickets and removes the need for learning rate warmup. This approach has been termed “late resetting.”
In this work, we independently confirmed the importance of late resetting and used late resetting for
all experiments (See Appendix A.1 for the precise late resetting values used for each experiment).

Global pruning Pruning can be performed in two different ways: locally and globally. In local
pruning, weights are pruned within each layer separately, such that every layer will have the same
fraction of pruned parameters. In global pruning, all layers are pooled together prior to pruning,
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allowing the pruning fraction to vary across layers. Consistently, we observed that global pruning
leads to higher performance than local pruning (Figure 1a). As such, global pruning is used throughout
this work. Interestingly, we observed that global magnitude pruning preferentially prunes weights
in deeper layers, leaving the first layer in particular relatively unpruned (Figure 1b; light blues
represent early pruning iterations with low overall pruning fractions while dark blues represent late
pruning iterations with high pruning fractions). An intuitive explanation for this result is that because
deeper layers have many more parameters than early layers, pruning at a constant rate harms early
layers more since they have fewer absolute parameters remaining. For example, the first layer of
VGG19 contains only 1792 parameters, so pruning this layer at a rate of 99% would result in only 18
parameters remaining, significantly harming the expressivity of the network.

Random masks In the sparse pruning setting, winning ticket initializations contain two sources of
information: the values of the remaining weights and the structure of the pruning mask. In previous
work [7–9], the structure of the pruning mask was maintained for the random ticket initializations,
with only the values of the weights themselves randomized. However, the structure of this mask
contains a substantial amount of information and requires fore-knowledge of the winning ticket
initialization (see Figure A1 for detailed comparisons of different random masks). For this work, we
therefore consider random tickets to have both randomly drawn weight values (from the initialization
distribution) and randomly permuted masks. For a more detailed discussion of the impact of different
mask structures, see Appendix A.2.

3.2 Models

Experiments were performed using two models: a modified form of VGG19 [30] and a ResNet50
[15]. For VGG19, structure is as in [30], except all fully-connected layers were removed such that the
last layer is simply a linear layer from the last convolutional layer to the number of output classes (as
in [7, 8]). For details of model architecture and hyperparameters used in training, see Appendix A.1.

3.3 Transferring winning tickets across datasets and optimizers

In order to evaluate the generality of winning tickets, we generate winning tickets in one training
configuration (“source”) and evaluate performance in a different configuration (“target”). For many
transfers, this requires changing the output layer size, since datasets have different numbers of output
classes. Since the winning ticket initialization is only defined for the source architecture and therefore
cannot be transferred to different topologies, we simply excluded this layer from the winning ticket
and randomly reinitialized it.

Additionally, during iterative pruning for the same training configuration, the winning ticket per-
formance for each iteration corresponds to the converged training performance of the subsequent
training step since after each pruning iteration, the network is reset to the winning ticket initialization.
However, in the transfer setting, this performance is only informative about the source configuration.
We therefore run two additional training runs at each pruning iteration: one for the winning ticket and
one for the random ticket on target configuration.

4 Results

For all experiments, we plot test accuracy at convergence as a function of the fraction of pruned
weights. For each curve, 6 replicates with different random seeds were run, with shaded error regions
representing ± 1 standard deviation. For comparisons on a given target dataset or optimizer, models
were trained for the same number of epochs (see Appendix A.1 for details).

4.1 Transfer within the same data distribution

As a first test of whether winning tickets generalize, we investigate the simplest form of transfer:
generalization across samples drawn from the same data distribution. To measure this, we divided
the CIFAR-10 dataset into two halves: CIFAR-10a and CIFAR-10b. Each half contained 25,000
training images with 2,500 images per class. We then asked whether winning tickets generated
using CIFAR-10a would produce increased performance on CIFAR-10b. To evaluate the impact of
transferring a winning ticket, we compared the CIFAR-10a ticket to both a random ticket and to a
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Figure 2: Transferring winning tickets within the same data distribution. CIFAR-10 was divided into two
halves (“10a” and “10b”), each of which contained 25,000 total examples with 2,500 images per class. Winning
tickets generated using CIFAR-10a generalized well to CIFAR-10b for both VGG19 (a) and ResNet50 (b). Error
bars represent mean ± standard deviation across six random seeds.

winning ticket generated on CIFAR-10b itself (Figure 2). Interestingly, for ResNet50 models, while
both CIFAR-10a and CIFAR-10b winning tickets outperformed random tickets at extreme pruning
fractions, both under-performed random tickets at low pruning fractions, suggesting that ResNet
winning tickets may be particularly sensitive to smaller datasets at low pruning fractions.

4.2 Transfer across datasets

Our experiments on transferring winning tickets across training data drawn from the same distribution
suggest that winning tickets are not overfit to the particular data samples presented during training,
but winning tickets may still be overfit to the data distribution itself. To answer this question, we
performed a large set of experiments to assess whether winning tickets generated on one dataset
generalize to different datasets within the same domain (natural images).

We used six different natural image datasets of various complexity to test this: Fashion-MNIST [32],
SVHN [23], CIFAR-10 [18], CIFAR-100 [18], ImageNet [4], and Places365 [36]. These datasets
vary across a number of axes, including grayscale vs. color, input size, number of output classes,
and training set size. Since each pruning curve comprises the result of training six models (to
capture variability due to random seed) from scratch at each pruning fraction, these experiments
required extensive computation, especially for models trained on large datasets such as ImageNet
and Places365. We therefore only evaluated tickets from larger datasets on these datasets to best
prioritize computation. For all comparisons, we performed experiments on both VGG19 (Figure 3)
and ResNet50 (Figure 4).

Across all comparisons, several key trends emerged. First and foremost, individual winning tickets
which generalize across all datasets with performance close to that of winning tickets generated on
the target dataset can be found (e.g., winning tickets sourced from ImageNet and Places365 datsets).
This result suggests that a substantial fraction of the inductive bias provided by winning tickets is
dataset-independent (at least within the same domain and for large source datasets), and provides
hope that individual tickets or distributions of such winning tickets may be generated once and used
across different tasks and environments.

Second, we consistently observed that winning tickets generated on larger, more complex datasets
generalized substantially better than those generated on small datasets. This is particularly noticeable
for winning tickets generated on the ImageNet and Places365 source datasets, which demonstrated
competitive performance across all datasets. Interestingly, this effect was not merely a result of
training set size, but also appeared to be impacted by the number of classes. This is most clearly
exemplified by the differing performance of winning tickets generated on CIFAR-10 and CIFAR-100,
both of which feature 50,000 total training examples, but differ in the number of classes. Consistently,
CIFAR-100 tickets generalized better than CIFAR-10 tickets, even to simple datasets such as Fashion-
MNIST and SVHN, suggesting that simply increasing the number of classes while keeping the dataset
size fixed may lead to substantial gains in winning ticket generalization (e.g., compare CIFAR-10
and CIFAR-100 ticket performance in Figure 3e).

Interestingly, we also observed that when networks are extremely over-parameterized relative to the
complexity of the task, as when we apply VGG19 to Fashion-MNIST, we found that transferred
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Figure 3: Transferring VGG19 winning tickets across datasets. Winning ticket performance on target
datasets: SVHN (a), Fashion-MNIST (b), CIFAR-10 (c), CIFAR-100 (d), ImageNet (e), and Places365 (f).
Within each plot, each line represents a different source dataset for the winning ticket. In cases where the y-axis
has been narrowed to make small differences visible, full y-axes are provided as insets. Error bars represent
mean ± standard deviation across six random seeds.

winning tickets dramatically outperformed winning tickets generated on Fashion-MNIST itself at
low pruning rates (Figure 3b). In this setting, large networks trained on Fashion-MNIST overfit
dramatically, leading to very low test accuracy at low pruning rates, which gradually improved as more
weights were pruned. Winning tickets generated on other datasets, however, bypassed this problem,
reaching high accuracy at the same pruning rates which were untrainable from even Fashion-MNIST
winning tickets (Figure 3b), again suggesting that transferred tickets provide additional regularization
against overfitting.

Finally, we observed that winning ticket transfer success was roughly similar across across VGG19
and ResNet50 models, but several differences were present. Consistent with previous results [8], per-
formance on large-scale datasets began to rapidly degrade for ResNet50 models when approximately
5-10% of weights remained, in contrast to VGG19 models which only demonstrated small decreases
in accuracy, even with 99.9% of weights pruned. In contrast, at extreme pruning fractions on small
datasets, ResNet50 models consistently achieved similar or only slightly degraded performance
relative to over-parameterized models (e.g., Figures 4c and 4d). These results suggest that ResNet50
models may have a sharper “pruning cliff” than VGG19 models.

4.3 Transfer across optimizers

In the above sections, we demonstrated that winning tickets can be transferred across datasets within
the same domain, suggesting that winning tickets learn generic inductive biases which improve
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Figure 4: Transferring ResNet50 winning tickets across datasets. Winning ticket performance on target
datasets: SVHN (a), Fashion-MNIST (b), CIFAR-10 (c), CIFAR-100 (d), ImageNet (e), and Places365 (f).
Within each plot, each line represents a different source dataset for the winning ticket. In cases where the y-axis
has been narrowed to make small differences visible, full y-axes are provided as insets. Error bars represent
mean ± standard deviation across six random seeds.

training. However, it is possible that winning tickets are also specific to the particular optimizer that is
used. The starting point provided by a winning ticket allows a particular optimum to be reachable, but
extensions to standard stochastic gradient descent (SGD) may alter the reachability of certain states,
such that a winning ticket generated using one optimizer will not generalize to another optimizer.

To test this, we generated winning tickets using two optimizers (SGD with momentum and Adam
[16]), and evaluated whether winning tickets generated using one optimizer increased performance
with the other optimizer. We found that, as with transfer across datasets, transferred winning tickets for
VGG models achieved similar performance as those generated using the source optimizer (Figure 5).
Interestingly, we found that tickets transferred from SGD to Adam under-performed random tickets
at low pruning fractions, but significantly outperformed random tickets at high pruning fractions
(Figure 5b). Overall though, this result suggests that VGG winning tickets are not overfit to the
particular optimizer used during generation, suggesting that VGG winning tickets are optimizer-
independent.

5 Discussion

In this work, we demonstrated that winning tickets are capable of transferring across a variety of
training configurations, suggesting that they are not overfit to a particular optimizer or dataset, but
rather feature inductive biases which improve training of sparsified models more generally (Figures 3

7



a b

Figure 5: Transferring VGG winning tickets across optimizers. Ticket performance when training using
SGD w/ momentum (a) and Adam (b). Within each plot, each line represents a different source optimizer for the
winning ticket. In cases where the y-axis has been narrowed to make small differences visible, full y-axes are
provided as insets. Error bars represent mean ± standard deviation across six random seeds.

and 4). We also found that winning tickets generated against datasets with more samples and
more classes consistently transfer better, suggesting that larger datasets encourage more generic
winning tickets. Together, these results suggest that winning ticket initializations satisfy a necessary
precondition (generality) for the eventual construction of a lottery ticket initialization scheme, and
provide greater insights into the factors which make winning ticket initializations unique.

5.1 Caveats and next steps

The generality of lottery ticket initializations is encouraging, but a number of key limitations remain.
First, while our results suggest that only a handful of winning tickets need to be generated, generating
these winning tickets via iterative pruning is very slow, requiring retraining the source model as many
as 30 times serially for extreme pruning fractions (e.g., 0.999). This issue is especially prevalent
given our observation that larger datasets produce more generic winning tickets, as these models
require significant compute for each training run.

Second, we have only evaluated the transfer of winning tickets across datasets within the same domain
(natural images) and task (object classification). It is possible that winning ticket initializations
confer inductive biases which are only good for a given data type or task structure, and that these
initializations may not transfer to other tasks, domains, or multi-modal settings. Future work will be
required to assess the generalization of winning tickets across domains and diverse task sets.

Third, while we found that transferred winning tickets often achieved roughly similar performance to
those generated on the same dataset, there was often a small, but noticeable gap between the transfer
ticket and the same dataset ticket, suggesting that a small fraction of the inductive bias conferred by
winning tickets is dataset-dependent. This effect was particularly pronounced for winning tickets
generated on small datasets. However, it remains unclear which aspects of winning tickets are
dataset-dependent and which aspects are dataset-independent. Working to understand this difference,
and investigating ways to close this gap will be important future work, and may also aid transfer
across domains.

Fourth, we only evaluated situations where the network topology is fixed in both the source and target
training configurations. This is limiting since it means a new winning ticket must be generated for
each and every architecture topology, though our experiments suggest that a small number of layers
may be re-initialized without substantially damaging the winning ticket. As such, the development of
methods to parameterize winning tickets for novel architectures will be an important direction for
future studies.

Finally, a critical question remains unanswered: what makes winning tickets special? While our
results shed a vague light on this by suggesting that whatever makes these winning tickets unique is
somewhat generic, what precisely makes them special is still unclear. Understanding these properties
will be critical for the future development of better initialization strategies inspired by lottery tickets.
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A Appendix

A.1 Model details and hyperparameters

General hyperparameters All models were trained in PyTorch [26]. For Fashion-MNIST, SVHN,
CIFAR-10, and CIFAR-100, batch sizes of 512 parallelized across 2 GPUs were used. For ImageNet
and Places365, batch sizes of 512 parallelized across 16 GPUs were used and trained using syn-
chronous distributed training. For models trained with SGD, a learning rate of 0.1 was used with
momentum of 0.9 and weight decay of 0.0001. For models trained with Adam, a learning rate of
0.0003 was used with betas of 0.9 and 0.999 and weight decay of 0.0001.

VGG19 VGG19 was implemented as in [30], except all fully-connected layers were removed
and replaced with an average pool layer, as in [7, 8]. Precisely, filter sizes were as follows: {64,
64, max-pool, 128, 128, max-pool, 256, 256, 256, 256, max-pool, 512, 512, 512, 512, max-pool,
512, 512, 512, 512, global-average-pool}. ReLU non-linearities were applied throughout and batch
normalization was applied after each convolutional layer. For all convolutional layers, kernel sizes
of 3 with padding of 1 were used, and all convolutional layers were initialized using the Xavier
normal initialization with biases initialized to 0, and batch normalization weight and bias parameters
initialized to 1 and 0, respectively. All VGG19 models were trained for 160 epochs. Learning rates
were annealed by a factor of 10 at 80 and 120 epochs.

ResNet50 ResNet50 was implemented as in [15]. Precisely, blocks were structured as follows
(stride, filter sizes, output channels): (1x1, 64, 64, 256) x 3, (2x2, 128, 128, 512) x 4, (2x2, 256, 256,
1024) x 6, (2x2, 512, 512, 2048) x 3, followed by an average pool layer and a linear classification
layer. All ResNet50 models were trained for 90 epochs. Learning rates were annealed by a factor of
10 at 50, 65, and 80 epochs.

Pruning parameters For all models, an iterative pruning rate of 0.2 was used and 30 pruning
iterations were performed. Following the sixth pruning iteration, model performance was evaluated
every third pruning iteration. Pruning was performed using magnitude pruning, such that the smallest
magnitude weights were removed first, as in [12, 19]. For Fashion-MNIST, SVHN, CIFAR-10 and
CIFAR-100 winning tickets, late resetting of 1 epoch was used. For ImageNet and Places365 winning
tickets, late resetting of 3 epochs was used.

A.2 Randomized masks

Figure A1: Comparison of different random masks. Performance of various random masks on CIFAR-10.
Error bars represent mean ± standard deviation across six random seeds.

When models are pruned in an unstructured manner, there are two aspects of the final pruned model
that may be informative: the values of the weights themselves and the structure of the mask used
for pruning. In the original lottery ticket study [7], bad tickets were compared with randomly
drawn values, but the preserved winning ticket mask. This has the unintended consequence of
transferring information from the winning ticket to the bad ticket, potentially inflating bad ticket
performance. This issue seems particularly relevant given that we observed that global pruning
results in substantially better performance and noticeably different layerwise pruning ratios relative to
layerwise pruning (Figure 1), suggesting that the mask statistics likely contain important information.
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To test this, we evaluated three types of masks: preserved masks, globally permuted masks, and
locally permuted masks. In the preserved mask case, the same mask found by the winning ticket is
used for the random ticket. In the locally permuted case, the mask is permuted within each layer,
such that the exact structure of the mask is broken, but the layerwise statistics remain intact. Finally,
in the globally permuted case, the mask is permuted across all layers, such that no information should
be passed between the winning ticket and the bad ticket.

Consistent with the lottery ticket hypotehsis, we found that the winning ticket outperformed all
random tickets (Figure A1). Interestingly, we found that while locally permuting masks damaged
performance somewhat (blue vs. green), globally permuting the mask results in dramatically worse
performance (blue/green vs. yellow), suggesting that the layerwise statistics derived from training the
over-parameterized model are very informative. As this information would not be available without
going through the process of generating a winning ticket, we consider the purely random mask to be
the most relevant comparison to training an equivalently parameterized model from scratch.
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