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ABSTRACT

Representational sparsity is known to affect robustness to input perturbations in
deep neural networks (DNN5s), but less is known about how the semantic content
of representations affects robustness. Class selectivity—the variability of a unit’s
responses across data classes or dimensions—is one way of quantifying the sparsity
of semantic representations. Given recent evidence that class selectivity may not be
necessary for, and in some cases can impair generalization, we sought to investigate
whether it also confers robustness (or vulnerability) to perturbations of input data.
We found that class selectivity leads to increased vulnerability to average-case
(naturalistic) perturbations in ResNet18 and ResNet20, as measured using Tiny
ImageNetC and CIFARI10C, respectively. Networks regularized to have lower
levels of class selectivity are more robust to average-case perturbations, while
networks with higher class selectivity are more vulnerable. In contrast, we found
that class selectivity increases robustness to multiple types of worst-case (i.e. white
box adversarial) perturbations, suggesting that while decreasing class selectivity is
helpful for average-case perturbations, it is harmful for worst-case perturbations.
To explain this difference, we studied the dimensionality of the networks’ represen-
tations: we found that the dimensionality of early-layer representations is inversely
proportional to a network’s class selectivity, and that adversarial samples cause
a larger increase in early-layer dimensionality than corrupted samples. We also
found that the input-unit gradient was more variable across samples and units in
high-selectivity networks compared to low-selectivity networks. These results lead
to the conclusion that units participate more consistently in low-selectivity regimes
compared to high-selectivity regimes, effectively creating a larger attack surface
and hence vulnerability to worst-case perturbations.

1 INTRODUCTION

Methods for understanding deep neural networks (DNNs) often attempt to find individual neurons
or small sets of neurons that are representative of a network’s decision (Erhan et al.,[2009; |Zeiler
and Fergus| 2014; |[Karpathy et al.l 2016; Amjad et al., 2018; [Lillian et al.l 2018;|Dhamdhere et al.,
2019;Olah et al., 2020). Selectivity in individual units (i.e. variability in a neuron’s activations across
semantically-relevant data features) has been of particular interest to researchers trying to better
understand deep neural networks (DNNs) (Zhou et al.,|2015;|Olah et al., 2017; Morcos et al., 2018
Zhou et al., 2018} Meyes et al.,[2019; Na et al.| 2019; Zhou et al.| 2019; Rafegas et al., 2019; Bau
et al.l|2020; Leavitt and Morcos, |2020). However, recent work has shown that selective neurons can
be irrelevant, or even detrimental to network performance, emphasizing the importance of examining
distributed representations for understanding DNNs (Morcos et al., 2018; [Donnelly and Roegiest,
2019; [Dalvi et al., [2019bj |[Leavitt and Morcos), 2020).

In parallel, work on robustness seeks to build models that are robust to perturbed inputs (Szegedy
et al.l 2013} (Carlini and Wagner, 2017afbj [Vasiljevic et al., [2016; |[Kurakin et al., 2017; |Gilmer
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et al., 2018}; Zheng et al.| [2016)). Hendrycks and Dietterich| (2019) distinguish between two types
of robustness: corruption robustness, which measures a classifier’s performance on low-quality or
naturalistically-perturbed inputs—and thus is an "average-case" measure—and adversarial robustness,
which measures a classifier’s performance on small, additive perturbations that are tailored to the
classifier—and thus is a "worst-case" measure

Research on robustness has been predominantly focused on worst-case perturbations, which is affected
by weight and activation sparsity (Madry et al.| 2018} Balda et al., 2020} |Ye et al.,[2018; |Guo et al.}
2018; Dhillon et al., 2018)) and representational dimensionality (Langeberg et al., 2019; Sanyal et al.,
2020; [Nayebi and Ganguli,[2017)). But less is known about the mechanisms underlying average-case
perturbation robustness and its common factors with worst-case robustness. Some techniques for
improving worst-case robustness also improve average-case robustness (Hendrycks and Dietterich,
2019; [Ford et al., 2019), thus it is possible that sparsity and representational dimensionality also
contribute to average-case robustness. Because class selectivity regularization provides a method for
controlling the sparsity of semantic representations and can also improve test accuracy on unperturbed
data (Leavitt and Morcos, [2020)), we sought to investigate whether it could be utilized to improve
perturbation robustness and elucidate the factors responsible for it.

In this work we pursue a series of experiments investigating the causal role of selectivity in robustness
to worst-case and average-case perturbations in DNNs. To do so, we used a recently-developed
class selectivity regularizer (Leavitt and Morcos|, [2020) to directly modify the amount of class
selectivity learned by DNNs, and examined how this affected the DNNs’ robustness to worst-case
and average-case perturbations. Our findings are as follows:

» Networks regularized to have lower levels of class selectivity are more robust to average-case
perturbations, while networks with higher class selectivity are generally less robust to average-case
perturbations, as measured in ResNets using the Tiny ImageNetC and CIFAR10C datasets. The
corruption robustness imparted by regularizing against class selectivity was consistent across
nearly all tested corruptions.

 In contrast to its impact on average-case perturbations, decreasing class selectivity reduces
robustness to worst-case perturbations in both tested models, as assessed using gradient-based
white-box attacks.

* The variability of the input-unit gradient across samples and units is proportional to a network’s
overall class selectivity, indicating that high variability in perturbability within and across units
may facilitate worst-case perturbation robustness.

* The dimensionality of activation changes caused by corruption markedly increases in early layers
for both perturbation types, but is larger for worst-case perturbations and low-selectivity networks.
This implies that representational dimensionality may present a trade-off between worst-case and
average-case perturbation robustness.

Our results demonstrate that changing class selectivity, and hence the sparsity of semantic representa-
tions, can confer robustness to average-case or worst-case perturbations, but not both simultaneously.
They also highlight the roles of input-unit gradient variability and representational dimensionality in
mediating this trade-off.

2 RELATED WORK

2.1 PERTURBATION ROBUSTNESS

The most commonly studied form of robustness in DNNs is robustness to adversarial attacks, in
which an input is perturbed in a manner that maximizes the change in the network’s output while
attempting to minimize or maintain below some threshold the magnitude of the change to the input
(Serban et al.,|2019; Warde-Farley and Goodfellow}, |2017) . Because white-box adversarial attacks
are optimized to best confuse a given network, robustness to adversarial attacks are a "worst-case"

"We use the terms "worst-case perturbation” and "average-case perturbation” instead of "adversarial attack"
and "corruption”, respectively, because this usage is more general and dispenses with the implied categorical
distinction of using seemingly-unrelated terms. Also note that while [Hendrycks and Dietterich| (2019) assign
specific and distinct meanings to "perturbation” and "corruption", we use the term "perturbation" more generally
to refer to any change to an input.



measure of robustness. Two factors that have been proposed to account for DNN robustness to
worst-case perturbations are particularly relevant to the present study: sparsity and dimensionality.

Multiple studies have linked activation and weight sparsity with robustness to worst-case perturbations.
Adpversarial training improves worst-case robustness (Goodfellow et al.|(2015)); [Huang et al.| (2016)
and results in sparser weight matrices (Madry et al.|[2018; Balda et al.,2020). Methods for increasing
the sparsity of weight matrices (Ye et al.;,2018;|Guo et al.||2018)) and activations (Dhillon et al.,[2018)
likewise improve worst-case robustness, indicating that the weight sparsity caused by worst-case
perturbation training is not simply a side-effect.

Researchers have also attempted to understand the nature of worst-case robustness from a perspective
complementary to that of sparsity: dimensionality. Like sparsity, worst-case perturbation training
reduces the rank of weight matrices and representations, and regularizing weight matrices and
representations to be low-rank can improve worst-case perturbation robustness (Langeberg et al.,
2019;|Sanyal et al.| 2020; [Nayebi and Ganguli, [2017). Taken together, these studies support the notion
that networks with low-dimensional representations are more robust to worst-case perturbations.

Comparatively less research has been conducted to understand the factors underlying average-
case robustness. Certain techniques for improving worst-case perturbation robustness also help
against average-case perturbations (Hendrycks and Dietterichl [2019; |Geirhos et al., [2018; [Ford et al.}
2019). Examining the frequency domain has elucidated one mechanism: worst-case perturbations
for "baseline" models tend to be in the high frequency domain, and improvements in average-
case robustness resulting from worst-case robustness training are at least partially ascribable to
models becoming less reliant on high-frequency information (Yin et al.,|2019} |Tsuzuku and Sato|
2019; |Geirhos et al., 2018)). But it remains unknown whether other factors such as sparsity and
dimensionality link these two forms of robustness.

2.2 CLASS SELECTIVITY

One technique that has been of particular interest to researchers trying to better understand deep
(and biological) neural networks is examining the selectivity of individual units (Zhou et al.,[2015};
Olah et al., [2017; Morcos et al.,[2018; Zhou et al.| 2018} Meyes et al.,[2019; |Na et al., 2019} |Zhou
et al., 2019; Rafegas et al.l 2019} Bau et al.| 2020; [Leavitt and Morcos| [2020; [Sherrington, [1906j;
Kandel et al.| [2000). Evidence regarding the importance of selectivity has mostly relied on single
unit ablation, and has been equivocal (Radford et al.,|2017}; |[Morcos et al., 2018; |/Amjad et al., 2018
Zhou et al.| 2018} |Donnelly and Roegiest, |2019; Dalvi et al.l 2019a)). However [Leavitt and Morcos
(2020) examined the causal role of single unit selectivity in network performance using an approach
that sidesteps the limitations of single unit ablation. By regularizing for or against class selectivity
in the loss function, they found that reducing class selectivity has little negative impact on—and
can even improve—test accuracy in CNNs trained on image recognition tasks, but that increasing
class selectivity has significant negative effects on test accuracy. However, their study focused on
examining the effects of class selectivity on test accuracy in unperturbed (clean) inputs. Thus it
remains unknown how class selectivity affects robustness to perturbed inputs, and whether class
selectivity can serve as or elucidate a link between worst-case and average-case robustness.

3 APPROACH

A detailed description of our approach is provided in Appendix [A.T]

Models and training protocols Our experiments were performed on ResNet18 (He et al.|[2016)
trained on Tiny ImageNet (Fei-Fei et al., 2015), and ResNet20 (He et al.,|2016)) trained on CIFAR10
(Krizhevsky, 2009). We focus primarily on the results for ResNet18 trained on Tiny ImageNet in
the main text for space, though results were qualitatively similar for ResNet20 trained on CIFAR10.
Experimental results were obtained with model parameters from the epoch that achieved the highest
validation set accuracy over the training epochs, and 20 replicate models with different random seeds
were run for each hyperparameter set.

Class selectivity index Following (Leavitt and Morcos|, [2020). A unit’s class selectivity index is
calculated as follows: At every ReLU, the activation in response to a single sample was averaged
across all elements of the filter map (which we refer to as a "unit"). The class-conditional mean



activation was then calculated across all samples in the clean test set, and the class selectivity index

(ST) was calculated as follows: M —
SI — max max (l)
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where [t,,q, 18 the largest class-conditional mean activation and fi_ 4, s the mean response to the
remaining (i.e. non-fi,,q.) classes. The selectivity index ranges from O to 1. A unit with identical
average activity for all classes would have a selectivity of 0, and a unit that only responds to a single
class would have a selectivity of 1.

AsMorcos et al.|(2018) note, the selectivity index is not a perfect measure of information content in
single units. For example, a unit with a litte bit of information about many classes would have a low
selectivity index. However, it identifies units that are class-selective similarly to prior studies (Zhou
et al.| 2018). Most importantly, it is differentiable with respect to the model parameters.

Class selectivity regularization We used (Leavitt and Morcos, [2020)’s class selectivity regularizer
to control the levels of class selectivity learned by units in a network during training. Class selectivity
regularization is achieved by minimizing the following loss function during training:

C
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The left-hand term in the loss function is the standard classification cross-entropy, where c is the class
index, C' is the number of classes, y. is the true class label, and ¥, is the predicted class probability.
The right-hand component of the loss function, —agy, is the class selectivity regularizer. The
regularizer consists of two terms: the selectivity term,

1 on 1

ps1 = L; U; SL, 3)
where [ is a convolutional layer, L is number of layers, w is a unit, U is the number of units in a given
layer, and S, is the class selectivity index of unit u. The selectivity term of the regularizer is obtained
by computing the selectivity index for each unit in a layer, then computing the mean selectivity index
across units within each layer, then computing the mean selectivity index across layers. Computing
the mean within layers before computing the mean across layers (as compared to computing the mean
across all units in the network) mitigates the biases induced by the larger numbers of units in deeper
layers. The other term in the regularizer is «, the regularization scale, which determines whether
class selectivity is promoted or discouraged. Negative values of « discourage class selectivity in
individual units and positive values encourage it. The magnitude of o controls the contribution of the
selectivity term to the overall loss. During training, the class selectivity index was computed for each

minibatch. The final (output) layer was not subject to selectivity regularization or included in our
analyses because by definition, the output layer must be class selective in a classification task.

Measuring average-case robustness To evaluate robustness to average-case perturbations, we
tested our networks on CIFAR10C and Tiny ImageNetC, two benchmark datasets consisting of the
CIFAR10 or Tiny ImageNet data, respectively, to which a set of naturalistic corruptions have been
applied (Hendrycks and Dietterich, 2019| Figure[AT). . We average across all corruption types and
severities (see Appendix[A.T.2|for details) when reporting corrupted test accuracy.

Measuring worst-case robustness We tested our models’ worst-case (i.e. adversarial) robustness
using two methods. The fast gradient sign method (FGSM) (Goodfellow et al.l 2015) is a simple
attack that computes the gradient of the loss with respect to the input image, then scales the image’s
pixels (within some bound) in the direction that increases the loss. The second method, projected
gradient descent (PGD) (Kurakin et al., 2016; Madry et al.| 2018)), is an iterated version of FGSM.
We used a step size of 0.0001 and an /., norm perturbation budget (¢) of 16/255.

Computing the stability of units and layers To quantify variation in networks’ perturbability, we
first computed the [ norm of the input-unit gradient for each unit u in a network. We then computed
the mean (u,,) and standard deviation (o) of the norm across samples for each unit. o, /1, yields
the coefficient of variation (Everitt, 2002)) for a unit (C'V,,), a measure of variation in perturbability
for individual units. We also quantified the variation across units in a layer by computing the standard
deviation of p,, across units in a layer [, o(,,) = oy, and dividing this by the corresponding mean
across units 1(f4,, ) = f, to yield the CV across units o;/p; = CV].

4
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b) Figure 1: Reducing class selectivity improves average-case robust-
v + ness. Test accuracy (y-axis) as a function of corruption type (x-axis),

class selectivity regularization scale («; color), and corruption severity
(ordering along y-axis). Test accuracy is reduced proportionally to corrup-

§ 15 tion severity, leading to an ordering along the y-axis; corruption severity 1
: (least severe) is at the top, corruption severity 5 (most severe) at the bottom.
" (b) Mean test accuracy across all corruptions and severities (y-axis) as a

+ function of « (x-axis). Results shown are for ResNet18 trained on Tiny

+ ImageNet and tested on Tiny ImageNetC. Error bars = 95% confidence
intervals of the mean. See Figure[A6]for CIFAR10C results.
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4 RESULTS

4.1 AVERAGE-CASE ROBUSTNESS IS INVERSELY PROPORTIONAL TO CLASS SELECTIVITY

Certain kinds of sparsity—including reliance on single directions (Morcos et al., [2018)), and the
semantic sparsity measured by class selectivity (Leavitt and Morcos|, |2020)—have been shown to
impair network performance. We sought to extend this question to robustness: how does the sparsity
of semantic representations affect robustness to average-case perturbations of the input data? We used
a recently-introduced method (Leavitt and Morcos| (2020); Approach E]) to modulate the amount of
class selectivity learned by DNNs (Figure |A2{demonstrates effects of selectivity regularization). We
then examined how this affected performance on Tiny ImageNetC and CIFAR10C, two benchmark
datasets for average-case corruptions (Approach [3)).

Changing the level of class selectivity across neurons in a network could have one of three possible
effects on corruption robustness: If concentrating semantic representations into fewer neurons (i.e.
promoting semantic sparsity) provides fewer potent dimensions on which perturbed inputs can act,
then increasing class selectivity should confer networks with robustness to average-case perturbations,
while reducing class selectivity should render networks more vulnerable. Alternatively, if distributing
semantic representations across more units (i.e. reducing sparsity) dilutes the changes induced by
perturbed inputs, then reducing class selectivity should increase a network’s robustness to average-
case perturbations, while increasing class selectivity should reduce robustness.

We found that decreasing class selectivity leads to increased robustness to average-case perturbations
for both ResNet18 tested on Tiny ImageNetC (Figure[I) and ResNet20 tested on CIFAR10C (Figure
[A6). In ResNet18, we found that mean test accuracy on corrupted inputs increases as class selectivity
decreases (Figure [I)), with test accuracy reaching a maximum at regularization scale &« = —2.0
(mean test accuracy across corruptions and severities at «_y g =17), representing a 3.5 percentage
point (pp) increase relative to no selectivity regularization (i.e. «ag; test accuracy at og = 13.5).
In contrast, regularizing to increase class selectivity has either no effect or a negative impact on
corruption robustness. Corrupted test accuracy remains relatively stable until o = 1.0, after which
point it declines. The results are qualitatively similar for ResNet20 tested on CIFAR10C (Figure [A6)),
except the vulnerability to corruption caused by increasing selectivity is even more dramatic. We
also controlled for the effect of baseline clean accuracy across models with different class selectivity
regularization scales and found similar results (Appendix [A.3).

We also found that the effect of class selectivity on perturbed robustness is consistent across corruption
types. In ResNet18, regularizing against selectivity improves perturbation robustness for 12 out of 15
corruptions types in Tiny ImageNetC (Figure [Ia} Figure [A4), and for 14 out of 19 corruption types in
CIFAR10C for ResNet20 (Figure Figure [A7). Together these results demonstrate that reduced
class selectivity confers robustness to average-case perturbations, implying that distributing semantic
representations across neurons—i.e. low sparsity—dilutes the changes induced by average-case
perturbations.
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4.2 CLASS SELECTIVITY IMPARTS WORST-CASE PERTURBATION ROBUSTNESS

We showed that the sparsity of a network’s semantic representations, as measured with class selectivity,
is causally related to a network’s robustness to average-case perturbations. But how does the sparsity
of semantic representations affect worst-case robustness? We addressed this question by testing
our class selectivity-regularized networks on inputs that had been perturbed using using one of two
gradient-based methods (see Approach 3).

If distributing semantic representations across units provides more dimensions upon which a worst-
case perturbation is potent, then worst-case perturbation robustness should be proportional to class
selectivity. However, if increasing the sparsity of semantic representations creates more responsive
individual, then worst-case robustness should be inversely proportional to class selectivity.

Unlike average-case perturbations, decreasing class selectivity decreases robustness to worst-case
perturbations for both ResNet18 trained on Tiny ImageNet and ResNet20 trained on CIFAR10
(Figures [2]and [A9). For small perturbations, the effects of class selectivity regularization on test
accuracy appear to overwhelm the effects of perturbations. But as the magnitude of perturbation
increases, a stark ordering emerges: test accuracy monotonically decreases as a function of class
selectivity in ResNet18 for both FGSM (Figure 2a) and PGD attacks (Figure[2b). The ordering is also
present for ResNet20, though less consistent for the two networks with the highest class selectivity
(a = 0.7 and o = 1.0). However, increasing class selectivity is much more damaging to test accuracy
in ResNet20 trained on CIFAR10 compared to ResNet18 trained on Tiny ImageNet (Leavitt and
Morcos|, 2020, Figure [A2), so the the substantial performance deficits of extreme selectivity in
ResNet20 likely mask the perturbation-robustness. This result demonstrates that networks with sparse
semantic representations are less vulnerable to worst-case perturbation than networks with distributed
semantic representations. We also verified that the worst-case robustness of high-selectivity networks
is not fully explained by gradient-masking (Athalye et al.l 2018 Appendix [A.4).

Networks whose outputs are more stable to small input perturbations are known to have improved
generalization performance and worst-case perturbation robustness (Drucker and Le Cun, {1992
Novak et al., [2018;Sokolic et al., 2017; Rifai et al.l 2011; [Hoffman et al., 2019). To examine whether
increasing class selectivity improves worst-case perturbation robustness by increasing network
stability, we analyzed each network’s input-output Jacobian, which is proportional to its stability—a
large-magnitude Jacobian means that a small change to the network’s input will cause a large change
to its output. If class selectivity induces worst-case robustness by increasing network stability, then
networks with higher class selectivity should have smaller Jacobians. But if increased class selectivity
induces adversarial robustness through alternative mechanisms, then class selectivity should have
no effect on the Jacobian. We found that the [, norm of the input-output Jacobian is inversely
proportional to class selectivity for both ResNet18 (Figure[2c) and ResNet20 (Figure[A9¢), indicating
that distributed semantic representations are more vulnerable to worst-case perturbation because they
are less stable than sparse semantic representations.

4.3  VARIABILITY OF THE INPUT-UNIT GRADIENT ACROSS SAMPLES AND UNITS

We observed that the input-output Jacobian is proportional to worst-case vulnerability and inversely
proportional to class selectivity, but focusing on input-output stability potentially overlooks phenom-
ena present in hidden layers and units. If class selectivity imparts worst-case robustness by making
individual units less reliably perturbable—because each unit is highly tuned to a particular subset
of images—then we should expect to see more variation across input-unit gradients for units in
high-selectivity networks compared to units in low-selectivity networks. Alternatively, worst-case ro-



bustness in high-selectivity networks could be achieved by reducing both the magnitude and variation
of units’ perturbability, in which case we would expect to observe lower variation across input-unit
gradients for units in high-selectivity networks compared to low-selectivity networks.

a) We quantified variation in unit perturbability using the
coefficient of variation of the input-unit gradient across
. samples for each unit (C'V,,; Approach[3). The CV is a
b /N\A measure of variability that normalizes the standard devia-
tion of a quantity by the mean. A large CV indicates high
f—M variability, a small CV indicates low variability. To quan-
S s seltiiy Regulrizatin sl @iy variation in perturbability across units, we computed
1071 -2.0-1.0-0.7-0.4-02 0 0.2 0.4 0.7 1.0 2.0 . .
the CV across units in each layer, (C'V;; Approach 3).
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We found that units in high-selectivity networks exhib-
ited greater variation in their perturbability than units in
low-selectivity networks, both within individual units and
across units in each layer. This effect was present in
both ResNet18 trained on Tiny ImageNet (Figure 3)) and
ResNet20 trained on CIFAR10 (Figure [AT2), although
the effect was less consistent for across-unit variability in
later layers in ResNet18 (Figure[3b). Interestingly, class
selectivity affects both the numerator (o) and denominator
(p) of the CV calculation for both the CV across samples
and CV across units (Appendix [A.3). These results in-
dicate that that high class selectivity imparts worst-case
robustness by increasing the variation in perturbability
within and across units, while the worst-case vulnerability
associated with low class selectivity results from more

=3
~
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Input-Unit Gradient
Variability, Layer (CV,)

Figure 3: Class selectivity causes higher
variation in perturbability within and
across units (a) Coefficient of variation of
input-unit gradient for each unit (CV,,; see
Approach [3f y-axis) as a function of layer
(x-axis). (b) CV of input-unit gradient across

units in a layer (C'V;; y-axis) as a function
of layer (x-axis). Results shown are for
ResNet18 trained on Tiny ImageNet. Shaded
regions = 95% confidence intervals of the
mean. See Appendix [A.5] for results for
ResNet20 trained on CIFAR10.

consistently perturbable units. It is worth noting that
the inverse can be stated with regards to average-case ro-
bustness: low variation in perturbability both within and
across units in low-selectivity networks is associated with
robustness to average-case perturbations, despite the these
units (and networks) being more perturbable on average.

4.4 DIMENSIONALITY IN EARLY LAYERS PREDICTS PERTURBATION VULNERABILITY

Prior research has elucidated the mechanisms of worst-case perturbations using the framework of
dimensionality (Langeberg et al., 2019} [Nayebi and Ganguli, |2017; [Sanyal et al., 2020), hence
investigating the dimensionality of the changes induced by average-case and worst-case perturbations
could reveal a common factor linking them to each other and to class selectivity.

One possible explanation for the discrepancy between class selectivity’s impact on worst-case
and average-case corruptions is that different corruption types impact representations with varying
dimensionalities. For example, if only a few neurons are needed to change a network’s decision,
the dimensionality of the change in the representation due to perturbation might be very low, as
only a few units need to be modified. We thus measured dimensionality using a straightforward,
linear method: we applied Principal Component Analysis (PCA) to the activation matrices of each
layer in our networks and computed the number of components necessary to explain 95% of the
variance (and replicated our results with different variance thresholds; Appendix [A.T.4} Appendix
[A.6). We first examined the dimensionality of the representations of the clean test data. If the
sparsity of semantic representations is reflected in dimensionality, then networks with more class
selectivity should have lower-dimensional representations than networks with less class selectivity.
Alternatively, if high-selectivity representations are of similar dimensionality to low-selectivity
representations—though perhaps occupying different sub-spaces—then dimensionality would be
unaffected by class selectivity.

We found that the sparsity of a DNN’s semantic representations corresponds directly to the dimen-
sionality of those representations. Dimensionality is inversely proportional to class selectivity in early
ResNet18 layers (<layer 9; Figure da)), and across all of ResNet20 (Figure [AT5d). Networks with
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Figure 4: Dimensionality in early layers predicts worst-case vulnerability. (a) Fraction of dimensionality
(y-axis; see Appendix as a function of layer (x-axis). (b) Dimensionality of difference between clean and
average-case perturbation activations (y-axis) as a function of layer (x-axis). (¢) Dimensionality of difference
between clean and worst-case perturbation activations (y-axis) as a function of layer (x-axis). Results shown are
for ResNet18 trained on Tiny ImageNet. See Appendix @]for ResNet20.

higher class selectivity tend to have lower dimensionality, and networks with lower class selectivity
tend to have higher dimensionality. These results show that the sparsity of a network’s semantic
representations is indeed reflected in those representations’ dimensionality.

We next examined the dimensionality of perturbation-induced changes in representations by subtract-
ing the perturbed activation matrix from the clean activation matrix and computing the dimensionality
of this "difference matrix" (see Appendix [A.T.4). Intuitively, this metric quantifies the dimensionality
of the change in the representation caused by perturbing the input. If it is small, the perturbation
impacts fewer units, while if it is large, more units are impacted. Interestingly, we found that the
dimensionality of the changes in activations induced by both average-case (Figure db) and worst-case
perturbations (Figure |4c)) was notably higher for networks with reduced class-selectivity, suggesting
that decreasing class selectivity causes changes in input to become more distributed.

We found that the activation changes caused by average-case perturbations are higher-dimensional
than the representations of the clean data in both ResNet18 (compare Figures[#bland[4a)) and ResNet20
(Figures[AT5¢]and [AT5d), and that this effect is inversely proportional to class selectivity (Figures [4b|
and [AT5e)); the increase in dimensionality from average-case perturbations was more pronounced in
low-selectivity networks than in high-selectivity networks. These results indicate that class selectivity
not only predicts the dimensionality of a representation, but also the change in dimensionality induced
by an average-case perturbation.

Notably, however, the increase in early-layer dimensionality was much larger for worst-case perturba-
tions than average-case perturbations (Figure ic} Figure[AT5T) . These results indicate that, while the
changes in dimensionality induced by both naturalistic and adversarial perturbations are proportional
to the dimensionality of the network’s representations, these changes do not consistently project
onto coding-relevant dimensions of the representations. Indeed, the larger change in early-layer
dimensionality caused by worst-case perturbations likely reflects targeted projection onto coding-
relevant dimensions and provides intuition as to why low-selectivity networks are more susceptible to
worst-case perturbations.

5 DISCUSSION

Our results demonstrate that changes in the sparsity of semantic representations, as measured with
class selectivity, induce a trade-off between robustness to average-case vs. worst-case perturbations:
highly-distributed semantic representations confer robustness to average-case perturbations, but
their increased dimensionality and consistent perturbability result in vulnerability to worst-case
perturbations. In contrast, sparse semantic representations yield low-dimensional representations and
inconsistently-perturbable units, imparting worst-case robustness. Furthermore, the dimensionality of
the difference in early-layer activations between clean and perturbed samples is larger for worst-case
perturbations than for average-case perturbations. More generally, our results link average-case and
worst-case perturbation robustness through class selectivity and representational dimensionality.

We hesitate to generalize too broadly about our findings, as they are limited to CNNs trained on
image classification tasks. It is possible that the results we report here are specific to our models
and/or datasets, and also may not extend to other tasks. And while class selectivity regularization
appears effective at imparting average-case perturbation robustness, we hope future work will more
comprehensively assess the viability of its adoption into the deep learning toolkit for this purpose.
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A APPENDIX

A.1 DETAILED APPROACH

Unless otherwise noted: all experimental results were derived from the corrupted or adversarial test
set with the parameters from the epoch that achieved the highest clean validation set accuracy over the
training epochs; 20 replicates with different random seeds were run for each hyperparameter set; error
bars and shaded regions denote bootstrapped 95% confidence intervals; selectivity regularization was
not applied to the final (output) layer, nor was the final layer included in any of our analyses.

A.1.1 MODELS

All models were trained using stochastic gradient descent (SGD) with momentum = 0.9 and weight
decay = 0.0001. The maxpool layer after the first batchnorm layer in ResNet18 (see He et al.| (2016))
was removed because of the smaller size of Tiny Imagenet images compared to standard ImageNet
images (64x64 vs. 256x256, respectively). ResNet18 were trained for 90 epochs with a minibatch
size of 4096 samples with a learning rate of 0.1, multiplied (annealed) by 0.1 at epochs 35, 50, 65,
and 80. .

ResNet20 (code modified from Idelbayev|(2020)) were trained for 200 epochs using a minibatch size
of 256 samples and a learning rate of 0.1, annealed by 0.1 at epochs 100 and 150.

A.1.2 DATASETS

Tiny Imagenet (Fei-Fei et al.l 2015) consists of 500 training images and 50 images for each of its 200
classes. We used the validation set for testing and created a new validation set by taking 50 images
per class from the training set, selected randomly for each seed. We split the 50k CIFAR10 training
samples into a 45k sample training set and a 5k validation set, similar to our approach with Tiny
Imagenet.

All experimental results were derived from the test set with the parameters from the epoch that
achieved the highest validation set accuracy over the training epochs. 20 replicates with different
random seeds were run for each hyperparameter set. Selectivity regularization was not applied to the
final (output) layer, nor was the final layer included any of our analyses.

CIFARI10C consists of a dataset in which 19 different naturalistic corruptions have been applied to
the CIFAR10 test set at 5 different levels of severity. Tiny ImageNetC also has 5 levels of corruption
severity, but consists of 15 corruptions.

We would like to note that Tiny ImageNetC does not use the Tiny ImageNet test data. While the
two datasets were created using the same data generation procedure—cropping and scaling images
from the same 200 ImageNet classes—they differ in the specific ImageNet images they use. It is
possible that the images used to create Tiny ImageNetC are out-of-distribution with regards to the
Tiny ImageNet training data, in which case our results from testing on Tiny ImageNetC actually
underestimate the corruption robustness of our networks. The creators of Tiny ImageNetC kindly
provided the clean (uncorrupted) Tiny ImageNetC data necessary for the dimensionality analysis,
which relies on matches corrupted and clean data samples.

A.1.3 SOFTWARE

Experiments were conducted using PyTorch (Paszke et al.,2019), analyzed using the SciPy ecosystem
(Virtanen et al.l 2019)), and visualized using Seaborn (Waskom et al.,2017)).

A.1.4 QUANTIFYING DIMENSIONALITY

We quantified the dimensionality of a layer’s representations by applying PCA to the layer’s activation
matrix for the clean test data and counting the number of dimensions necessary to explain 95% of the
variance, then dividing by the total number of dimensions (i.e. the fraction of total dimensionality;
we also replicated our results using the fraction of total dimensionality necessary to explain 90% and
99% of the variance). The same procedure was applied to compute the dimensionality of perturbation-
induced changes in representations, except the activations for a perturbed data set were subtracted
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Figure Al1: Example naturalistic corruptions from the Tiny ImageNetC dataset. (a) Clean (no corruption).
(b) Brightness. (¢) Contrast. (d) Elastic transform. (e) Shot noise. All corruptions are shown at severity level
5/5.

from the corresponding clean activations prior to applying PCA. For average-case perturbations, we
performed this analysis for every corruption type and severity, and for the worst-case perturbations
we used PGD with 40 steps.

A.2 EFFECTS OF CLASS SELECTIVITY REGULARIZATION ON TEST ACCURACY
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Figure A2: Effects of class selectivity regularization on test accuracy. Replicated as in Leavitt and Morcos|
. (a) Test accuracy (y-axis) as a function of mean class selectivity (x-axis) for ResNet18 trained on Tiny
ImageNet. « denotes the sign and intensity of class selectivity regularization. Negative o lowers selectivity,
positive « increases selectivity, and the magnitude of o changes the strength of the effect. Each data point
represents the mean class selectivity across all units in a single trained model. (b) Same as (a), but for ResNet20
trained on CIFAR10.
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A.3 ADDITIONAL RESULTS FOR AVERAGE-CASE PERTURBATION ROBUSTNESS

Because modifying class selectivity can affect performance on clean (unperturbed) inputs (Leavitt
and Morcos| (2020); Figure @) it is possible that the effects we observe of class selectivity on
perturbed test accuracy are not caused by changes in perturbation robustness per se, but simply by
changes in baseline model accuracy. We controlled for this by normalizing each model’s perturbed
test accuracy by its clean (unperturbed) test accuracy. The results are generally consistent even after
controlling for clean test accuracy, although increasing class selectivity does not cause the same
deficits in as measured using non-normalized perturbed test accuracy in ResNet18 trained on Tiny
ImageNet (Figure[A3a Interestingly, in ResNet20 trained on CIFAR10, normalizing perturbed test
accuracy reveals a more dramatic improvement in perturbation robustness caused by reducing class
selectivity (Figure [A6c)).
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Figure A3: Controlling for clean test accuracy, and effect of corruption severity across corruptions. (a)
Corrupted test accuracy normalized by clean test accuracy (y-axis) as a function of class selectivity regularization
scale (a; x-axis). Negative v lowers selectivity, positive «v increases selectivity, and the magnitude of « changes
the strength of the effect. Normalized perturbed test accuracy appears higher in networks with high class
selectivity (large o), but this is likely due to a floor effect: clean test accuracy is already much closer to the lower
bound—chance—in networks with very high class selectivity, which may reflect a different performance regime,
making direct comparison difficult. (b) Mean test accuracy across all corruptions (y-axis) as a function of «
(x-axis) for different corruption severities (ordering along y-axis; shade of connecting line). Error bars indicate
95% confidence intervals of the mean.
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Figure A4: Mean test accuracy across corruption intensities for each corruption type for ResNet18 tested
on Tiny ImageNetC. Test accuracy (y-axis) as a function of corruption type (x-axis) and class selectivity
regularization scale («, color). Reducing class selectivity improves robustness against all 15/15 corruption types.
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Figure AS: Trade-off between clean and perturbed test accuracy in ResNet18 tested on Tiny ImageNetC.
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color) and regularization scales («, fill color). Mean is computed across all corruption types. Error bars = 95%
confidence intervals of the mean.
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Figure A6: Reducing class selectivity confers robustness to average-case perturbations in ResNet20
trained on CIFAR10. (a) Test accuracy (y-axis) as a function of corruption type (x-axis), class selectiv-
ity regularization scale (a; color), and corruption severity (ordering along y-axis). Test accuracy is reduced
proportionally to corruption severity, leading to an ordering along the y-axis, with corruption severity 1 (least
severe) at the top and corruption severity 5 (most severe) at the bottom. Negative o lowers selectivity, positive «
increases selectivity, and the magnitude of « changes the strength of the effect (see Figure[A2b]and Approach][3).
(b) Mean test accuracy across all corruptions and severities (y-axis) as a function of « (x-axis). (¢) Corrupted
test accuracy normalized by clean test accuracy (y-axis) as a function of class selectivity regularization scale
(a; x-axis). Negative o lowers selectivity, positive « increases selectivity, and the magnitude of o changes
the strength of the effect. Normalized perturbed test accuracy appears higher in networks with higher class
selectivity (larger «), but this is likely due to a floor effect: clean test accuracy is already much closer to the
lower bound—chance—in networks with very high class selectivity, which may reflect a different performance
regime, making direct comparison difficult. (d) Mean test accuracy across all corruptions (y-axis) as a function
of « (x-axis) for different corruption severities (ordering along y-axis; shade of connecting line). Error bars
indicate 95% confidence intervals of the mean.

17



©
3

'y

'Y

o e
80 * +
“e Wy wve .
we P L] "y " +
> * + ¢
270
4 t . L TR b, #4 +
o
g
<60 ¢+ + + (] ¢ s
@
: + Hy
50 Class Selectivity Regularization Scale (a)
o + ° ° ° +
-1.0 -0.7 -04 -02 0 0.2 04 07 1.0
40 [} + Low Baseline High
Selectivity Selectivity Selectivity
Fog Jpe Zoom Speckle Glass Spatter Shot Defocus Elastic Gaussian Frost SaturateBrightness Snow Gaussian Motion Contrast Impulse Pixelate
Compression Blur Noise Blur Noise Blur  Transform Blur Noise Blur i

Figure A7: Mean test accuracy across corruption intensities for each corruption type for ResNet20 tested
on CIFAR10C. Test accuracy (y-axis) as a function of corruption type (x-axis) and class selectivity regularization
scale (a, color). Reducing class selectivity improves robustness against 14/19 corruption types. Error bars =
95% confidence intervals of the mean.
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A.4 WORST-CASE PERTURBATION ROBUSTNESS

We also confirmed that the worst-case robustness of high-selectivity networks was not simply due
to gradient-masking (Athalye et al.,[2018) by generating worst-case perturbations using each of the
replicate models trained with no selectivity regularization (o = 0), then testing selectivity-regularized
models on these samples. We found that high-selectivity models were less vulnerable to the = 0
samples than low-selectivity models for high-intensity perturbations (Appendix [AT0] indicating that
gradient-masking does not fully account for the worst-case robustness of high-selectivity models.
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Figure A9: Reducing class selectivity increases worst-case perturbation vulnerability in ResNet20
trained on CIFAR10. (a) Test accuracy (y-axis) as a function of perturbation intensity (e; x-axis) and class
selectivity regularization scale (a; color) for the FGSM attack. (b) Test accuracy (y-axis) as a function of
adversarial optimization steps (x-axis) and « (color) for the PGD attack. (¢) Network stability, as measured with
norm of the input-output Jacobian (y-axis) as a function of « (x-axis).
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Figure A10: Gradient masking does not fully account for worst-case perturbation robustness conferred
by increased class selectivity. (a) Test Accuracy (y-axis) as a function of adversarial optimization steps (x-axis)
and class selectivity regularization scale (c; color) when tested on adversarial examples generated using o = 0.
Because 20 replicate networks were trained for each value of o (see Approach[3), models trained with alpha = 0
could be tested on adversarial examples generated from a different replicate v = 0 network ("different replicate";
solid line) or adversarial samples generated from their own parameters ("same replicate"; dashed line). Data

shown are for ResNet18 trained on Tiny ImageNet (b). Same as (a), but for ResNet20 trained on CIFAR10.
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A.5 STABILITY TO INPUT PERTURBATIONS IN UNITS AND LAYERS
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Figure A11: Mean and standard deviation of input-unit gradient in ResNet18 trained on Tiny ImageNet.
(a) Input-unit gradient (y-axis) as a function of layer (x-axis). (b) Standard deviation of input-unit gradient for
each unit (o,,; y-axis) as a function of layer (x-axis). (¢) Standard deviation of input-unit gradient across units in
a layer (oy; y-axis) as a function of layer (x-axis). Shaded region = 95% confidence interval of the mean.
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Figure A12: Class selectivity causes higher variation in perturbability within and across units in
ResNet20 trained on CIFAR10. (a) Coefficient of variation of input-unit gradient for each unit (C'V,,; see
Approach 3} y-axis) as a function of layer (x-axis). (b) CV of input-unit gradient across units in a layer (C'V;;
y-axis) as a function of layer (x-axis). Shaded regions = 95% confidence interval of the mean.
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Figure A13: Mean and standard deviation of input-unit gradient in ResNet20 trained on CIFAR10. (a)
Input-unit gradient (y-axis) as a function of layer (x-axis). (b) Standard deviation of input-unit gradient for each
unit (o,,; y-axis) as a function of layer (x-axis). (¢) Standard deviation of input-unit gradient across units in a
layer (0;; y-axis) as a function of layer (x-axis). Shaded region = 95% confidence interval of the mean.
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A.6 REPRESENTATIONAL DIMENSIONALITY
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Figure A14: Dimensionality in early layers predicts worst-case vulnerability in ResNet18 trained on Tiny
ImageNet. Identical to Figure[d] but dimensionality is computed as the number of principal components needed
to explain 90% of variance in (a) - (¢), and 99% of variance in (d) - (f). (a) Fraction of dimensionality (y-axis; see
Appendix[A-T4) as a function of layer (x-axis). (b) Dimensionality of difference between clean and average-case
perturbation activations (y-axis) as a function of layer (x-axis). (¢) Dimensionality of difference between clean
and worst-case perturbation activations (y-axis) as a function of layer (x-axis). (d) - (f), identical to (a) - (c), but
for 99% explained variance threshold.
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Figure A15: Dimensionality in early layers predicts worst-case vulnerability in ResNet20 trained on
CIFAR10. Identical to Figureﬂ but for ResNet20 trained on CIFAR10. (a) Fraction of dimensionality needed
to explain 90% of variance (y-axis; see Appendix [A.1.4) as a function of layer (x-axis). (b) Dimensionality of
difference between clean and average-case perturbation activations (y-axis) as a function of layer (x-axis). (¢)
Dimensionality of difference between clean and worst-case perturbation activations (y-axis) as a function of
layer (x-axis). (d) - (f), identical to (a) - (c), but for 95% explained variance threshold. (g) - (i), identical to (a) -
(c), but for 99% explained variance threshold.
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