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Abstract. Slimmable neural networks provide a flexible trade-o↵ front
between prediction error and computational requirement (such as the
number of floating-point operations or FLOPs) with the same storage
requirement as a single model. They are useful for reducing maintenance
overhead for deploying models to devices with di↵erent memory con-
straints and are useful for optimizing the e�ciency of a system with
many CNNs. However, existing slimmable network approaches either
do not optimize layer-wise widths or optimize the shared-weights and
layer-wise widths independently, thereby leaving significant room for
improvement by joint width and weight optimization. In this work, we
propose a general framework to enable joint optimization for both width
configurations and weights of slimmable networks. Our framework sub-
sumes conventional and NAS-based slimmable methods as special cases
and provides flexibility to improve over existing methods. From a practi-
cal standpoint, we propose Joslim, an algorithm that jointly optimizes
both the widths and weights for slimmable nets, which outperforms
existing methods for optimizing slimmable networks across various net-
works, datasets, and objectives. Quantitatively, improvements up to 1.7%
and 8% in top-1 accuracy on the ImageNet dataset can be attained for
MobileNetV2 considering FLOPs and memory footprint, respectively.
Our results highlight the potential of optimizing the channel counts for
di↵erent layers jointly with the weights for slimmable networks. Code
available at https://github.com/cmu-enyac/Joslim.
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1 Introduction

Slimmable neural networks have been proposed with the promise of enabling
multiple neural networks with di↵erent trade-o↵s between prediction error and
the number of floating-point operations (FLOPs), all at the storage requirement
of only a single neural network [42]. This is in stark contrast to channel pruning
methods [4,39,14] that aim for a small standalone model. Slimmable neural
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networks are useful for applications running on mobile and other resource-
constrained devices. As an example, the ability to deploy multiple versions
of the same neural network alleviates the maintenance overhead for applications
which support a number of di↵erent mobile devices with di↵erent memory and
storage constraints, as only one model needs to be maintained. On the other
hand, slimmable networks can bee critical for designing an e�cient system that
runs multiple CNNs. Specifically, an autonomous robot may execute multiple
CNNs for various tasks at the same time. When optimizing the robot’s e�ciency
(overall performance vs. computational costs), it is unclear which CNNs should be
trimmed by how much to achieve an overall best e�ciency. As a result, methods
based on trial-and-error are necessary for optimizing such a system. However,
if trimming the computational requirement of any CNN requires re-training or
fine-tuning, this entire process will be impractically expensive. In this particular
case, if we replace each of the CNNs with their respective slimmable versions,
optimizing a system of CNNs becomes practically feasible as slimmable networks
can be slimmed without the need of re-training or fine-tuning.

A slimmable neural network is trained by simultaneously considering networks
with di↵erent widths (or filter counts) using a single set of shared weights. The
width of a child network is specified by a real number between 0 and 1, which is
known as the “width-multiplier” [17]. Such a parameter specifies how many filters
per layer to use proportional to the full network. For example, a width-multiplier
of 0.35⇥ represents a network with 35% of the channel counts of the full network
for all the layers. While specifying child networks using a single width-multiplier
for all the layers has shown empirical success [40,42], such a specification neglects
that di↵erent layers a↵ect the network’s output di↵erently [43] and have di↵erent
FLOPs and memory footprint requirements [13], which may lead to sub-optimal
results. As an alternative, neural architecture search (NAS) methods such as
BigNAS [41] optimizes the layer-wise widths for slimmable networks, however, a
sequential greedy procedure is adopted to optimize the widths and weights. As a
result, the optimization of weights is not adapted to the optimization of widths,
thereby leaving rooms for improvement by joint width and weight optimization.

In this work, we propose a framework for optimizing slimmable nets by
formalizing it as minimizing the area under the trade-o↵ curve between pre-
diction error and some metric of interest, e.g., memory footprint or FLOPs,
with alternating minimization. Our framework subsumes both the universally
slimmable networks [40] and BigNAS [41] as special cases. The framework is
general and provides us with insights to improve upon existing alternatives and
justifies our new algorithm Joslim, the first approach that jointly optimizes both
shared-weights and widths for slimmable nets. To this end, we demonstrate
empirically the superiority of the proposed algorithm over existing methods
using various datasets, networks, and objectives. We visualize the algorithmic
di↵erences between the proposed method and existing alternatives in Fig. 1.

The contributions of this work are as follows:
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Fig. 1: Schematic overview comparing our proposed method with existing alter-
natives and channel pruning. Channel pruning has a fundamentally di↵erent goal
compared to ours, i.e., training slimmable nets. Joslim jointly optimizes both
the widths and the shared weights.

– We propose a general framework that enables the joint optimization of
the widths and their corresponding shared weights of a slimmable net. The
framework is general and subsumes existing algorithms as special cases.

– We propose Joslim, an algorithm that jointly optimizes the widths and
weights of slimmable nets. We show empirically that Joslim outperforms
existing methods on various networks, datasets, and objectives. Quantitatively,
improvements up to 1.7% and 8% in top-1 accuracy on ImageNet are attained
for MobileNetV2 considering FLOPs and memory footprint, respectively.

2 Related work

2.1 Slimmable neural networks

Slimmable neural networks [42] enable multiple sub-networks with di↵erent
compression ratios to be generated from a single network with one set of weights.
This allows the network FLOPs to be dynamically configurable at run-time
without increasing the storage requirement of the model weights. Based on
this concept, better training methodologies have been proposed to enhance the
performance of slimmable networks [40]. One can view a slimmable network as a
dynamic computation graph where the graph can be constructed dynamically
with di↵erent accuracy and FLOPs profiles. With this perspective, one can go
beyond changing just the width of the network. For example, one can alter the
network’s sub-graphs [31], network’s depth [5,18,21,19], and network’s kernel sizes
and input resolutions [6,41,35,36]. Complementing prior work primarily focusing
on generalizing slimmable networks to additional architectural paradigms, our



4 T.-W. Chin et al.

work provides the first principled formulation for jointly optimizing the weights
and widths of slimmable networks. While our analysis focuses on the network
widths, our proposed framework can be easily extended to other architectural
parameters.

2.2 Neural architecture search

A slimmable neural network can be viewed as an instantiation of weight-sharing.
In the literature for neural architecture search (NAS), weight-sharing is com-
monly adopted to reduce the search overhead [22,33,15,2,4,39]. Specifically, NAS
methods use weight-sharing as a proxy for evaluating the performance of the
sub-networks to reduce the computational requirement of iterative training
and evaluation. However, the goal of NAS is the resulting architecture as op-
posed to both shared-weights and architecture. Exceptions are BigNAS [41]
and Once-for-all (OFA) networks [6]; however, in neither case the architecture
and shared-weights are jointly optimized. Specifically, both BigNAS and OFA
employ a two-stage paradigm where the shared-weights are optimized before
the architectures are optimized. This makes the trained weights oblivious to the
optimized architectures.

While slimmable networks are inherently multi-objective, multi-objective
optimization has also been adopted in NAS literature [11,7,26,12,37]. However,
a crucial di↵erence of the present work compared to these papers is that we
are interested in learning a single set of weights from which multiple FLOP
configurations can be used (as in slimmable networks) rather than finding archi-
tectures independently for each FLOP configuration that can be trained from
scratch freely. Put another way, in our setting, both shared-weights and the
searched architecture are optimized jointly, whereas in prior work, only searched
architectures were optimized.

When it comes to joint neural architecture search and weight training,
ENAS [29] and TuNAS [3] can both be seen as joint optimization. However,
in stark contrast to our work, their search is dedicated to a single network of a
single computational requirement (e.g., FLOPs) while our method is designed
to obtain the weights that work for various architectures across a wide range of
computational requirements.

2.3 Channel pruning

Reducing the channel or filter counts for a pre-trained model is also known as
channel pruning. In channel pruning, the goal is to find a single small model that
maximizes the accuracy while satisfying some resource constraints by optimizing
the layer-wise channel counts [20,16,24,38,24,25,39,4,27,8,23,9]. While channel
pruning also optimizes for non-uniform widths, the goal of channel pruning
is crucially di↵erent from ours. The key di↵erence is that channel pruning is
concerned with a single pruned model while slimmable neural networks require
a set of models to be trained using weight sharing. Nonetheless, we compare
our work with pruning methods that conduct greedy channel pruning since
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they naturally produce in a sequence of models that have di↵erent FLOPs.
In particular, we compare our work with AutoSlim [39] in Appendix E.1 and
demonstrate the e↵ectiveness of our proposed Joslim.

3 Methodology

In this work, we are interested in jointly optimizing the network widths and
network weights. Ultimately, when evaluating the performance of a slimmable
neural network, we care about the trade-o↵ curve between multiple objectives,
e.g., theoretical speedup and accuracy. This trade-o↵ curve is formed by evaluating
the two objectives at multiple width configurations using the same shared-weights.
Viewed from this perspective, both the widths and shared-weights should be
optimized in such a way that the resulting networks have a better trade-o↵ curve
(i.e., larger area under curve). This section formalizes this idea and provides an
algorithm to solve it in an approximate fashion.

3.1 Problem formulation

Our goal is to find both the weights and the width configurations that optimize the
area under the trade-o↵ curve between two competing objectives, e.g., accuracy
and inference speed. Without loss of generality, we use cross entropy loss as
the accuracy objective and FLOPs as the inference speed objective throughout
the text for clearer context. Note that FLOPs can also be replaced by other
metrics of interest such as memory footprint. Since in this case both objectives
are better when lower, the objective for the optimizing slimmable nets becomes
to minimize the area under curve. To quantify the area under curve, one can
use a Riemann integral. Let w(c) be a width configuration of c FLOPs, one
can quantify the Riemann integral by evaluating the cross entropy loss LS on
the training set S using the shared weights ✓ for the architectures that spread
uniformly on the FLOPs-axis between a lower bound l and an upper bound u

of FLOPs: {a|a = w(c), c 2 [l, u]}. More formally, the area under curve A is
characterized as

A(✓, w)def=
Z u

l
LS (✓, w(c)) dc (1)

⇡

NX

i=0

LS (✓, w(ci)) �, (2)

where equation 2 approximates the Riemann integral with the Riemann sum
using N architectures that are spread uniformly on the FLOPs-axis with a step
size �. With a quantifiable area under curve, our goal for optimizing slimmable
neural networks becomes finding both the shared-weights ✓ and the architecture
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function w to minimize their induced area under curve:

argmin
✓,w

A(✓, w) ⇡ argmin
✓,w

NX

i=0

LS (✓, w(ci)) � (3)

= argmin
✓,w

1

N

NX

i=0

LS (✓, w(ci)) (4)

⇡ argmin
✓,w

Ec⇠U(l,u)LS (✓, w(c)) , (5)

where U(l, u) denotes a uniform distribution over a lower bound l and an upper
bound u. Note that the solution to equation 5 is the shared-weight vector and
a set of architectures, which is drastically di↵erent from the solution to the
formulation used in the NAS literature [22,34], which is an architecture.

3.2 Proposed approach: Joslim

Since both the shared-weights ✓ and the architecture function w are optimization
variables of two natural groups, we start by using alternating minimization:

w
(t+1) = argmin

w
Ec⇠U(l,u)LS

⇣
✓(t)

, w(c)
⌘

(6)

✓(t+1) = argmin
✓

Ec⇠U(l,u)LS

⇣
✓, w(t+1)(c)

⌘
. (7)

In equation 6, we maintain the shared-weights ✓ fixed and for each FLOPs between
l and u, we search for a corresponding architecture that minimizes the cross
entropy loss. This step can be seen as a multi-objective neural architecture search
given a fixed set of pre-trained weights, and can be approximated using smart
algorithms such as multi-objective Bayesian optimization [28] or evolutionary
algorithms [10]. However, even with smart algorithms, such a procedure can be
impractical for every iteration of the alternating minimization.

In equation 7, one can use stochastic gradient descent by sampling from a
set of architectures that spread uniformly across FLOPs obtained from solving
equation 6. However, training such a weight-sharing network is practically 4⇥ the
training time of the largest standalone subnetwork [40] (it takes 6.5 GPU-days
to train a slimmable ResNet18), which prevents it from being adopted in the
alternating minimization framework.

To cope with these challenges, we propose targeted sampling, local approxi-
mation, and temporal sharing to approximate both equations.

Targeted sampling We propose to sample a set of FLOPs to approximate
the expectation in equations 6 and 7 with empirical estimates. Moreover, the
sampled FLOPs are shared across both steps in the alternating minimization so
that one does not have to solve for the architecture function w (needed for the
second step), but only solve for a set of architectures that have the corresponding
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FLOPs. Specifically, we approximate the expectation in both equations 6 and 7
with the sample mean:

c
(t)
i ⇠ U(l, u) 8 i = 1, . . . ,M (8)

w
(t+1)

⇡ argmin
w

1

M

MX

i=1

LS

⇣
✓(t)

, w(c(t)i )
⌘

(9)

✓(t+1)
⇡ argmin

✓

1

M

MX

i=1

LS

⇣
✓, w(t+1)(c(t)i )

⌘
. (10)

From equation 9 and 10, we can observe that at any timestamp t, we only query the
architecture function w

(t) and w
(t+1) at a fixed set of locations ci 8 i = 1, . . . ,M .

As a result, instead of solving for the architecture function w, we solve for a fixed
set of architectures W(t+1) at each timestamp as follows:

W
(t+1) := {w

(t+1)(ci), . . . , w
(t+1)(cM )} (11)

where

w
(t+1)(ci) = argmin

a
LS

⇣
✓(t)

,a
⌘

s.t. FLOPs(a) = ci.

(12)

With these approximations, for each iteration in the alternating minimization,
we solve for M architectures with targeted FLOPs as opposed to solving for the
entire approximate trade-o↵ curve.

Local approximation To reduce the overhead for solving equation 10, we
propose to approximate it with a few steps of gradient descent. Specifically,
instead of training a slimmable neural network with sampled architectures until
convergence in each iteration of alternating minimization (equation 10), we
propose to perform K steps of gradient descent:

x0def= ✓(t)

x(k+1)def= x(k)
� ⌘

1

M

MX

i=1

rx(k)LS

⇣
x(k)

,W
(t+1)

i

⌘

✓(t+1)
⇡ x(K)

,

(13)

where ⌘ is the learning rate. Larger K indicates better approximation with higher
training overhead.

Temporal sharing Since we use local approximation, ✓(t+1) and ✓(t) would
not be drastically di↵erent. As a result, instead of performing constrained neural
architecture search from scratch (i.e., solving for equation 12) in every iteration of
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the alternating minimization, we propose to share information across the search
procedures in di↵erent iterations of the alternation.

To this end, we propose to perform temporal sharing for multi-objective
Bayesian optimization with random scalarization (MOBO-RS) [28] to solve
equation 12. MOBO-RS itself is a sequential model-based optimization algorithm,
where one takes a set of architectures H, builds models (typically Gaussian
Processes [30]) to learn a mapping from architectures to cross entropy loss gCE

and FLOPs gFLOPs, scalarizes both models into a single objective with a random
weighting � (� controls the preference for cross entropy and FLOPs), and finally
optimizes the scalarized model to obtain a new architecture and stores the
architecture back to the set H. This entire procedure repeats for T iterations for
one MOBO-RS.

To exploit temporal similarity, we propose MOBO-TS2, which stands for
multi-objective Bayesian optimization with targeted scalarization and temporal
sharing. Specifically, we propose to let T = 1 and share H across alternating
minimization. Additionally, we modify the random scalarization with targeted
scalarization where we use binary search to search for the � that results in the
desired FLOPs. As such, H grows linearly with the number of alternations. In
such an approximation, for each MOBO in the alternating optimization, we
reevaluate the cross-entropy loss for each a 2 H to build faithful GPs. We
further provide theoretical analysis for approximation via temporal similarity for
Bayesian optimization in Appendix D.

Joslim Based on this preamble, we present our algorithm, Joslim, in Algorithm 1.
In short, Joslim has three steps: (1) build surrogate functions (i.e., GPs) and
acquisition functions (i.e., UCBs) using historical data H and their function
responses, (2) sample M target FLOPs and solve for the corresponding widths
(i.e., a) via binary search with the scalarized acquisition function and store them
back to H, and (3) perform K gradient descent steps using the solved widths. The
first two steps solve equation 12 with targeted sampling and temporal sharing,
and the final step solves equation 10 approximately with local approximation. In
the end, to obtain the best widths, we use non-dominated sorting based on the
training loss and FLOPs for a 2 H.

3.3 Relation to existing approaches

For direct comparison with our work we consider the universally slimmable neural
networks [40], which uses a single width multiplier to specify the widths of a
slimmable network and NAS-based approaches such as OFA [6] and BigNAS [41],
which have decoupled widths and weights optimization. To demonstrate the
generality of the proposed framework, we show how these previously published
works are special cases of our framework.

Slim Universally slimmable networks [40], or Slim for short, is a special case of
our framework where the widths are not optimized but pre-specified by a single
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Algorithm 1: Joslim

Input :Model parameters ✓, lower bound for width-multipliers w0 2 [0, 1],
number of full iterations F , number of gradient descent updates K,
number of � samples M

Output :Trained parameter ✓, approximate Pareto front N
1 H = {} (Historical minimizers a)
2 for i = 1...F do

3 x, y = sample data()
4 uCE, uFLOPs = LCE(H;✓,x, y), FLOPs(H)
5 gCE, gFLOPs = GP UCB( H, uCE, uFLOPs )
6 widths = []
7 for m = 1...M do

8 a = MOBO TS2( gCE, gFLOPs,H ) (Algorithm 2)
9 widths.append(a)

10 end

11 H = H [ widths (update historical data)
12 widths.append(w0)
13 for j = 1...K do

14 SlimmableTraining( ✓, widths )
15 (line 3-16 of Algorithm 1 in [40])

16 end

17 N=nonDominatedSort(H, uCE, uFLOPs)

18 end

Algorithm 2: MOBO-TS2
Input :Acquisition functions gCE, gFLOPs, historical data H, search precision

✏
Output : channel configurations a

1 c = Uniform( l, u ) (Sample a target FLOPs)
2 �FLOPs, �min, �max = 0.5, 0, 1

3 while |
FLOPs(a)�c

FullModelFLOPs
| > ✏ do // binary search

4 c=argminc Scalarize( �FLOPs, gCE, gFLOPs )
5 if FLOPs(a) > c then

6 �min = �FLOPs

7 �FLOPs = (�FLOPs + �max)/2

8 else

9 �max = �FLOPs

10 �FLOPs = (�FLOPs + �min)/2

11 end

12 end
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global width multiplier. This corresponds to solving equation 5 with w given as
a function that returns the width that satisfies some FLOPs by controlling a
single global width multiplier. Our framework is more general as it introduces
the freedom for optimizing the widths of slimmable nets.

OFA and BigNAS OFA and BigNAS use the same approach when it comes to
the channel search space4. They are also a special case of our framework where
the optimization of the widths and the shared-weights are carried out greedily.
Specifically, BigNAS first trains the shared-weights by random layer-wise width
multipliers. After convergence, BigNAS performs evolutionary search to optimize
the layer-wise width multipliers considering both error and FLOPs. This greedy
algorithm can be seen as performing one iteration of alternating minimization by
solving equation 7 followed by solving equation 6. From this perspective, one can
observe that the shared-weights ✓ are not jointly optimized with the widths. Our
framework is more general and enables joint optimization for both widths and
weights.

As we demonstrate in Section 4.2, our comprehensive empirical analysis
reveals that Joslim is superior to either approach when compared across multiple
networks, datasets, and objectives.

4 Experiments

4.1 Experimental setup

For all the Joslim experiments in this sub-section, we set K such that Joslim only
visits 1000 width configurations throughout the entire training (|H| = 1000). Also,
we set M to be 2, which follows the conventional slimmable training method [40]
that samples two width configurations in between the largest and the smallest
widths. As for binary search, we conduct at most 10 binary searches with ✏ set
to 0.02, which means that the binary search terminates if the FLOPs di↵erence
is within a two percent margin relative to the full model FLOPs. On average,
the procedure terminates by using 3.4 binary searches for results on ImageNet.
The dimension of a is network-dependent and is specified in Appendix A and
the training hyperparameters are detailed in Appendix B. To arrive at the final
set of architectures for Joslim, we use non-dominated sort based on the training
loss and FLOPs for a 2 H.

4.2 Performance gains introduced by Joslim

We consider three datasets: CIFAR-10, CIFAR-100, and ImageNet. To provide
informative comparisons, we verify our implementation for the conventional
slimmable training with the reported numbers in [40] using MobileNetV2 on

4 Since we only search for channel counts, the progressive shrinking strategy proposed
in OFA does not apply. As a result, both OFA and BigNAS have the same approach.
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(a) ResNet20 C10 (b) ResNet32 C10 (c) ResNet44 C10 (d) ResNet56 C10

(e) ResNet20 C100 (f) ResNet32 C100 (g) ResNet44 C100 (h) ResNet56 C100

(i) 2xResNet20 C100 (j) 3xResNet20 C100 (k) 4xResNet20 C100 (l) 5xResNet20 C100

Fig. 2: Comparisons among Slim, BigNAS, and Joslim. C10 and C100 denote
CIFAR-10/100. We perform three trials for each method and plot the mean and
standard deviation. nxResNet20 represents a n times wider ResNet20.

(a) MobileNetV2 (b) MobileNetV3 (c) ResNet18

Fig. 3: Comparisons among Slim, BigNAS, and Joslim on ImageNet.

ImageNet. Our results follow closely to the reported numbers as shown in Fig. 3a,
which makes our comparisons on other datasets convincing.

We compare to the following baselines:

– Slim: the conventional slimmable training method (the universally slimmable
networks by [40]). We select 40 architectures uniformly distributed across
FLOPs and run a non-dominated sort using training loss and FLOPs.

– BigNAS: disjoint optimization that first trains the shared-weights, then uses
search methods to find architectures that work well given the trained weights
(similar to OFA [6]). To compare fairly with Joslim, we use MOBO-RS for the
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MobileNetV2 MobileNetV3 ResNet18
MFLOPs Slim BigNAS Joslim MFLOPs Slim BigNAS Joslim MFLOPs Slim BigNAS Joslim

59 61.4 61.3 61.5 43 65.8 66.3 65.9 339 61.5 61.5 61.8

84 63.0 63.1 64.6 74 68.1 68.1 68.8 513 63.4 64.2 64.5

102 64.7 65.5 65.5 85 69.1 70.0 70.0 650 64.7 65.6 66.5

136 67.1 67.5 68.2 118 71.0 71.4 71.4 718 65.1 66.1 67.5

149 67.6 68.2 69.1 135 71.5 71.5 72.1 939 66.5 67.3 68.5

169 68.2 68.8 69.9 169 72.7 72.0 72.8 1231 68.0 68.4 69.4

212 69.7 69.6 70.6 184 73.0 72.5 73.2 1659 69.3 69.3 69.9

300 71.8 71.5 72.1 217 73.5 73.1 73.7 1814 69.6 69.7 70.0

Table 1: Comparing the top-1 accuracy among Slim, BigNAS, and Joslim on
ImageNet. Bold represents the highest accuracy of a given FLOPs.

Fig. 4: A latency-vs.-
error view of Fig. 3a.

Fig. 5: Prediction error vs. inference memory foot-
print for MobileNetV2 and ResNet18 on Ima-
geNet.

search. After optimization, we run a non-dominated sort for all the visited
architectures H using training loss and FLOPs.

The main results for the CIFAR dataset are summarized in Fig. 2 with
results on ImageNet summarized in Figure 3 and Table 1. Compared to Slim, the
proposed Joslim has demonstrated much better results across various networks
and datasets. This suggests that channel optimization can indeed improve the
e�ciency of slimmable networks. Compared to BigNAS, Joslim is better or
comparable across networks and datasets. This suggests that joint widths and
weights optimization leads to better overall performance for slimmable nets.
From the perspective of training overhead, Joslim introduced minor overhead
compared to Slim due to the temporal similarity approximation. More specifically,
on ImageNet, Joslim incurs approximately 20% extra overhead compared to Slim.

Note that the performance among these three methods are similar for the
CIFAR-10 dataset. This is plausible since when a network is more over-parameterized,
there are many solutions to the optimization problem and it is easier to find
solutions with the constraints imposed by weight sharing. In contrast, when the
network is relatively less over-parameterized, compromises have to be made due to
the constraints imposed by weight sharing. In such scenarios, Joslim outperforms
Slim significantly, as it can be seen in CIFAR-100 and ImageNet experiments.
We conjecture that this is because Joslim introduces a new optimization variable
(width-multipliers), which allows better compromises to be attained. Similarly,
from the experiments with ResNets on CIFAR-100 (Fig. 2e to Fig. 2h), we
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(a) Impact of binary
search (BS).

(b) Histogram of
FLOPs for H w/
and w/o BS.

(c) Performance for
di↵erent K.

(d) Additional over-
head over Slim for
di↵erent K.

Fig. 6: Ablation study for the introduced binary search and the number of gradient
descent updates per full iteration using ResNet20 and CIFAR-100. Experiments
are conducted three times and we plot the mean and standard deviation.

find that shallower models tend to benefit more from joint channel and weight
optimization than their deeper counterparts.

As FLOPs may not necessarily reflect latency improvements since FLOP does
not capture memory accesses, we in addition plot latency-vs.-error for the data
in Fig. 3a in Fig. 4. The latency is measured on a single V100 GPU using a batch
size of 128. When visualized in latency, Joslim still performs favorably compared
to Slim and BigNAS for MobileNetV2 on ImageNet.

Lastly, we consider another objective that is critical for on-device machine
learning, i.e., inference memory footprint [42]. Inference memory footprint decides
whether a model is executable or not on memory-constrained devices. We detailed
the memory footprint calculation in Appendix E. Since Joslim is general, we can
replace the FLOPs calculation with memory footprint calculation to optimize
for memory-vs.-error. As shown in Fig. 5, Joslim significantly outperform other
alternatives. Notably, Joslim outperforms Slim by up to 8% top-1 accuracy for
MobileNetV2. Such a drastic improvement comes from the fact that memory
footprint depends mostly on the largest layers. As a result, slimming all the layers
equally to arrive at networks with smaller memory footprint (as done in Slim) is
less than ideal since only one layer contributes to the reduced memory. In addition,
when comparing Joslim with BigNAS, we can observe significant improvements
as well, i.e., around 2% top-1 accuracy improvements for MobileNetV2, which
demonstrates the e↵ectiveness of joint width and weights optimization.

4.3 Ablation studies

In this subsection, we ablate the hyperparameters that are specific to Joslim to
understand their impact. We use ResNet20 and CIFAR-100 for the ablation with
the results summarized in Fig. 6.

Binary search Without binary search, one can also consider sampling the
scalarization weighting � uniformly from [0, 1], which does not require any binary
search and is easy to implement. However, the issue with this sampling strategy
is that uniform sampling � does not necessarily imply uniform sampling in the



14 T.-W. Chin et al.

objective space, e.g., FLOPs. As shown in Fig. 6a and Fig. 6b, sampling directly
in the � space results in non-uniform FLOPs and worse performance compared
to binary search.

Number of gradient descent steps In the approximation, the number of
architectures (|H|) is a↵ected by the number of gradient descent updates K. In
previous experiments for CIFAR, we have K = 313, which results in |H| = 1000.
Here, we ablate K to 156, 626, 1252, 3128 such that |H| = 2000, 500, 250, 100,
respectively. Given a fixed training epoch and batch size, Joslim produces a
better approximation for equation 10 but a worse approximation for equation 9
with larger K. The former is because of the local approximation while the latter
is because there are overall fewer iterations put into Bayesian optimization due
to temporal sharing. As shown in Fig. 6c, we observe worse results with higher
K. On the other hand, the improvement introduced by lower K saturates quickly.
The overhead of Joslim as a function of K compared to Slim is shown in Fig. 6d
where the dots are the employed K.

5 Conclusion

In this work, we are interested in optimizing both the architectural components
and shared-weights of slimmable neural networks. To achieve this goal, we propose
a general framework that optimizes slimmable nets by minimizing the area under
the trade-o↵ curve between cross entropy and FLOPs (or memory footprint) with
alternating minimization. We further show that the proposed framework subsumes
existing methods as special cases and provides flexibility for devising better
algorithms. To this end, we propose Joslim, an algorithm that jointly optimizes
the weights and widths of slimmable nets, which empirically outperforms existing
alternatives that either neglect width optimization or conduct widths and weights
optimization independently. We extensively verify the e↵ectiveness of Joslim over
existing techniques on three datasets (i.e., CIFAR10, CIFAR100, and ImageNet)
with two families of network architectures (i.e., ResNets and MobileNets) using
two types of objectives (i.e., FLOPs and memory footprint). Our results highlight
the importance and superiority in results of jointly optimizing the channel counts
for di↵erent layers and the weights for slimmable networks.
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