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Abstract

Convolutional architectures have proven ex-
tremely successful for vision tasks. Their hard
inductive biases enable sample-efficient learning,
but come at the cost of a potentially lower perfor-
mance ceiling. Vision Transformers (ViTs) rely
on more flexible self-attention layers, and have
recently outperformed CNNs for image classifi-
cation. However, they require costly pre-training
on large external datasets or distillation from pre-
trained convolutional networks. In this paper, we
ask the following question: is it possible to com-
bine the strengths of these two architectures while
avoiding their respective limitations? To this
end, we introduce gated positional self-attention
(GPSA), a form of positional self-attention which
can be equipped with a “soft” convolutional in-
ductive bias. We initialize the GPSA layers to
mimic the locality of convolutional layers, then
give each attention head the freedom to escape
locality by adjusting a gating parameter regu-
lating the attention paid to position versus con-
tent information. The resulting convolutional-
like ViT architecture, ConViT, outperforms the
DeiT (Touvron et al., 2020) on ImageNet, while
offering a much improved sample efficiency. We
further investigate the role of locality in learn-
ing by first quantifying how it is encouraged in
vanilla self-attention layers, then analyzing how it
is escaped in GPSA layers. We conclude by pre-
senting various ablations to better understand the
success of the ConViT. Our code and models are
released publicly at https://github.com/
facebookresearch/convit.
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1. Introduction
The success of deep learning over the last decade has largely
been fueled by models with strong inductive biases, al-
lowing efficient training across domains (Mitchell, 1980;
Goodfellow et al., 2016). The use of Convolutional Neural
Networks (CNNs) (LeCun et al., 1998; 1989), which have
become ubiquitous in computer vision since the success of
AlexNet in 2012 (Krizhevsky et al., 2017), epitomizes this
trend. Inductive biases are hard-coded into the architectural
structure of CNNs in the form of two strong constraints
on the weights: locality and weight sharing. By encourag-
ing translation equivariance (without pooling layers) and
translation invariance (with pooling layers) (Scherer et al.,
2010; Schmidhuber, 2015; Goodfellow et al., 2016), the
convolutional inductive bias makes models more sample-
efficient and parameter-efficient (Simoncelli & Olshausen,
2001; Ruderman & Bialek, 1994). Similarly, for sequence-
based tasks, recurrent networks with hard-coded memory
cells have been shown to simplify the learning of long-range
dependencies (LSTMs) and outperform vanilla recurrent
neural networks in a variety of settings (Gers et al., 1999;
Sundermeyer et al., 2012; Greff et al., 2017).

However, the rise of models based purely on attention in
recent years calls into question the necessity of hard-coded
inductive biases. First introduced as an add-on to recurrent
neural networks for Sequence-to-Sequence models (Bah-
danau et al., 2014), attention has led to a breakthrough in
Natural Language Processing through the emergence of
Transformer models, which rely solely on a particular kind
of attention: Self-Attention (SA) (Vaswani et al., 2017).
The strong performance of these models when pre-trained
on large datasets has quickly led to Transformer-based ap-
proaches becoming the default choice over recurrent models
like LSTMs (Devlin et al., 2018).

In vision tasks, the locality of CNNs impairs the ability to
capture long-range dependencies, whereas attention does
not suffer from this limitation. Chen et al. (2018) and Bello
et al. (2019) leveraged this complementarity by augmenting
convolutional layers with attention. More recently, Ra-
machandran et al. (2019) ran a series of experiments replac-
ing some or all convolutional layers in ResNets with atten-
tion, and found the best performing models used convolu-
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Figure 1. Soft inductive biases can help models learn without
being restrictive. Hard inductive biases, such as the architectural
constraints of CNNs, can greatly improve the sample-efficiency of
learning, but can become constraining when the size of the dataset
is not an issue. The soft inductive biases introduced by the ConViT
avoid this limitation by vanishing away when not required.

tions in early layers and attention in later layers. The Vision
Transformer (ViT), introduced by Dosovitskiy et al. (2020),
entirely dispenses with the convolutional inductive bias by
performing SA across embeddings of patches of pixels. The
ViT is able to match or exceed the performance of CNNs
but requires pre-training on vast amounts of data. More
recently, the Data-efficient Vision Transformer (DeiT) (Tou-
vron et al., 2020) was able to reach similar performances
without any pre-training on supplementary data, instead re-
lying on Knowledge Distillation (Hinton et al., 2015) from
a convolutional teacher.

Soft inductive biases The recent success of the ViT
demonstrates that while convolutional constraints can enable
strongly sample-efficient training in the small-data regime,
they can also become limiting as the dataset size is not
an issue. In data-plentiful regimes, hard inductive biases
can be overly restrictive and learning the most appropriate
inductive bias can prove more effective. The practitioner
is therefore confronted with a dilemma between using a
convolutional model, which has a high performance floor
but a potentially lower performance ceiling due to the hard
inductive biases, or a self-attention based model, which has
a lower floor but a higher ceiling. This dilemma leads to
the following question: can one get the best of both worlds,
and obtain the benefits of the convolutional inductive biases
without suffering from its limitations (see Fig. 1)?

In this direction, one successful approach is the combina-
tion of the two architectures in “hybrid” models. These
models, which interleave or combine convolutional and self-
attention layers, have fueled successful results in a variety
of tasks (Carion et al., 2020; Hu et al., 2018a; Ramachan-
dran et al., 2019; Chen et al., 2020; Locatello et al., 2020;
Sun et al., 2019; Srinivas et al., 2021; Wu et al., 2020). An-
other approach is that of Knowledge Distillation (Hinton

et al., 2015), which has recently been applied to transfer
the inductive bias of a convolutional teacher to a student
transformer (Touvron et al., 2020). While these two meth-
ods offer an interesting compromise, they forcefully induce
convolutional inductive biases into the Transformers, poten-
tially affecting the Transformer with their limitations.

Contribution In this paper, we take a new step towards
bridging the gap between CNNs and Transformers, by pre-
senting a new method to “softly” introduce a convolutional
inductive bias into the ViT. The idea is to let each SA layer
decide whether to behave as a convolutional layer or not,
depending on the context. We make the following contribu-
tions:

1. We present a new form of SA layer, named gated posi-
tional self-attention (GPSA), which one can initialize
as a convolutional layer. Each attention head then has
the freedom to recover expressivity by adjusting a gat-
ing parameter.

2. We then perform experiments based on the DeiT (Tou-
vron et al., 2020), with a certain number of SA layers
replaced by GPSA layers. The resulting Convolutional
Vision Transformer (ConViT) outperforms the DeiT
while boasting a much improved sample-efficiency
(Fig. 2).

3. We analyze quantitatively how local attention is natu-
rally encouraged in vanilla ViTs, then investigate the
inner workings of the ConViT and perform ablations
to investigate how it benefits from the convolution ini-
tialization.

Overall, our work demonstrates the effectiveness of ”soft”
inductive biases, especially in the low-data regime where
the learning model is highly underspecified (see Fig. 1), and
motivates the exploration of further methods to induce them.

Related work Our work is motivated by combining the
recent success of pure Transformer models (Dosovitskiy
et al., 2020) with the formalized relationship between SA
and convolution. Indeed, Cordonnier et al. (2019) showed
that a SA layer with Nh heads can express a convolution of
kernel size

√
Nh, if each head focuses on one of the pixels

in the kernel patch. By investigating the qualitative aspect of
attention maps of models trained on CIFAR-10, it is shown
that SA layers with relative positional encodings naturally
converge towards convolutional-like configurations, sug-
gesting that some degree of convolutional inductive bias is
desirable.

Conversely, the restrictiveness of hard locality constraints
has been proven by Elsayed et al. (2020). A breadth of
approaches have been taken to imbue CNN architectures
with nonlocality (Hu et al., 2018b;c; Wang et al., 2018; Wu
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Figure 2. The ConViT outperforms the DeiT both in sample
and parameter efficiency. Left: we compare the sample effi-
ciency of our ConViT-S (see Tab. 1) with that of the DeiT-S by
training them on restricted portions of ImageNet-1k, where we
only keep a certain fraction of the images of each class. Both mod-
els are trained with the hyperparameters reported in (Touvron et al.,
2020). We display the the relative improvement of the ConViT
over the DeiT in green. Right: we compare the top-1 accuracies
of our ConViT models with those of other ViTs (diamonds) and
CNNs (squares) on ImageNet-1k. The performance of other mod-
els on ImageNet are taken from (Touvron et al., 2020; He et al.,
2016; Tan & Le, 2019; Wu et al., 2020; Yuan et al., 2021).

et al., 2020). Another line of research is to induce a convolu-
tional inductive bias is different architectures. For example,
Neyshabur (2020) uses a regularization method to encour-
age fully-connected networks (FCNs) to learn convolutions
from scratch throughout training.

Most related to our approach, d’Ascoli et al. (2019) explored
a method to initialize FCNs networks as CNNs. This en-
ables the resulting FCN to reach much higher performance
than achievable with standard initialization. Moreover, if
the FCN is initialized from a partially trained CNN, the
recovered degrees of freedom allow the FCN to outperform
the CNN it stems from. This method relates more generally
to “warm start” approaches such as those used in spiked
tensor models (Anandkumar et al., 2016), where a smart
initialization, containing prior information on the problem,
is used to ease the learning task.

Reproducibility We provide an open-source implemen-
tation of our method as well as pretrained models
at the following address: https://github.com/
facebookresearch/convit.

2. Background
We begin by introducing the basics of SA layers, and show
how positional attention can allow SA layers to express
convolutional layers.

Multi-head self-attention The attention mechanism is
based on a trainable associative memory with (key, query)
vector pairs. A sequence of L1 “query” embeddings Q ∈
RL1×Dh is matched against another sequence of L2 “key”
embeddings K ∈ RL2×Dh using inner products. The re-
sult is an attention matrix whose entry (ij) quantifies how
semantically “relevant”Qi is toKj :

A = softmax

(
QK>√
Dh

)
∈ RL1×L2 , (1)

where (softmax [X])ij = eXij/
∑
k e
Xik .

Self-attention is a special case of attention where a sequence
is matched to itself, to extract the semantic dependencies
between its parts. In the ViT, the queries and keys are linear
projections of the embeddings of 16 × 16 pixel patches
X ∈ RL×Demb . Hence, we have Q = WqryX and K =
WkeyX , whereWkey,Wqry ∈ RDemb×Dh .

Multi-head SA layers use several self-attention heads in
parallel to allow the learning of different kinds of interde-
pendencies. They take as input a sequence of L embeddings
of dimension Demb = NhDh, and output a sequence of L
embeddings of the same dimension through the following
mechanism:

MSA(X) := concat
h∈[Nh]

[SAh(X)]Wout + bout, (2)

where Wout ∈ RDemb×Demb , bout ∈ RDemb . Each self-
attention head h performs the following operation:

SAh(X) := AhXW h
val, (3)

whereW h
val ∈ RDemb×Dh is the value matrix.

However, in the vanilla form of Eq. 1, SA layers are position-
agnostic: they do not know how the patches are located ac-
cording to each other. To incorporate positional information,
there are several options. One is to add some positional
information to the input at embedding time, before propa-
gating it through the SA layers: (Dosovitskiy et al., 2020)
use this approach in their ViT. Another possibility is to re-
place the vanilla SA with positional self-attention (PSA),
using encodings rij of the relative position of patches i and
j (Ramachandran et al., 2019):

Ah
ij := softmax

(
Qh
iK

h>
j + vh>posrij

)
(4)

Each attention head uses a trainable embedding vhpos ∈
RDpos , and the relative positional encodings rij ∈ RDpos

only depend on the distance between pixels i and j, denoted
denoted by a two-dimensional vector δij .

Self-attention as a generalized convolution Cordonnier
et al. (2019) show that a multi-head PSA layer with Nh

https://github.com/facebookresearch/convit
https://github.com/facebookresearch/convit
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(a) Input

Head 1 Head 2 Head 3

(b) Standard initialization
Head 1 Head 2 Head 3 Head 4

(c) Convolutional initialization, strength α = 0.5
Head 1 Head 2 Head 3 Head 4

(d) Convolutional initialization, strength α = 2

Figure 3. Positional self-attention layers can be initialized as
convolutional layers. (a): Input image from ImageNet, where the
query patch is highlighted by a red box. (b),(c),(d): attention maps
of an untrained SA layer (b) and those of a PSA layer using the
convolutional-like initialization scheme of Eq. 5 with two different
values of the locality strength parameter, α (c, d). Note that the
shapes of the image can easily be distinguished in (b), but not in
(c) or (d), when the attention is purely positional.

heads and learnable relative positional encodings (Eq. 4) of
dimension Dpos ≥ 3 can express any convolutional layer of
filter size

√
Nh ×

√
Nh, by setting the following:

vhpos := −αh
(
1,−2∆h

1 ,−2∆h
2 , 0, . . . 0

)
rδ :=

(
‖δ‖2, δ1, δ2, 0, . . . 0

)
Wqry = Wkey := 0, Wval := I

(5)

In the above,

• The center of attention ∆h ∈ R2 is the position to
which head h pays most attention to, relative to the
query patch. For example, in Fig. 3(c), the four heads
correspond, from left to right, to ∆1 = (−1, 1),∆2 =
(−1,−1),∆3 = (1, 1),∆4 = (1,−1).

• The locality strength αh > 0 determines how focused
the attention is around its center ∆h (it can also by un-
derstood as the “temperature” of the softmax in Eq. 1).
When αh is large, the attention is focused only on the
patch(es) located at ∆h, as in Fig. 3(d); when αh is
small, the attention is spread out into a larger area, as
in Fig. 3(c).

Thus, the PSA layer can achieve a strictly convolutional
attention map by setting the centers of attention ∆h to
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Figure 4. Architecture of the ConViT. The ConViT (left) is a ver-
sion of the ViT in which some of the self-attention (SA) layers
are replaced with gated positional self-attention layers (GPSA;
right). Because GPSA layers involve positional information, the
class token is concatenated with hidden representation after the
last GPSA layer. In this paper, we typically take 10 GPSA lay-
ers followed by 2 vanilla SA layers. FFN: feedforward network
(2 linear layers separated by a GeLU activation); Wqry: query
weights; Wkey: key weights; vpos: attention center and span em-
beddings (learned); rqk: relative position encodings (fixed); λ:
gating parameter (learned); σ: sigmoid function.

each of the possible positional offsets of a
√
Nh ×

√
Nh

convolutional kernel, and sending the locality strengths αh

to some large value.

3. Approach
Building on the insight of (Cordonnier et al., 2019), we in-
troduce the ConVit, a variant of the ViT (Dosovitskiy et al.,
2020) obtained by replacing some of the SA layers by a new
type of layer which we call gated positional self-attention
(GPSA) layers. The core idea is to enforce the “informed”
convolutional configuration of Eqs. 5 in the GPSA layers at
initialization, then let them decide whether to stay convo-
lutional or not. However, the standard parameterization of
PSA layers (Eq. 4) suffers from two limitations, which lead
us two introduce two modifications.

Adaptive attention span The first caveat in PSA is the
vast number of trainable parameters involved, since the num-
ber of relative positional encodings rδ is quadratic in the
number of patches. This led some authors to restrict the
attention to a subset of patches around the query patch (Ra-
machandran et al., 2019), at the cost of losing long-range
information.
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To avoid this, we leave the relative positional encodings
rδ fixed, and train only the embeddings vhpos which de-
termine the center and span of the attention heads; this
approach relates to the adaptive attention span introduced
in Sukhbaatar et al. (2019) for Language Transformers. The
initial values of rδ and vhpos are given by Eq. 5, where we
take Dpos = 3 to get rid of the useless zero components.
Thanks to Dpos � Dh, the number of parameters involved
in the positional attention is negligible compared to the num-
ber of parameters involved in the content attention. This
makes sense, as content interactions are inherently much
simpler to model than positional interactions.

Positional gating The second issue with standard PSA is
the fact that the content and positional terms in Eq. 4 are po-
tentially of different magnitudes, in which case the softmax
will ignore the smallest of the two. In particular, the con-
volutional initialization scheme discussed above involves
highly concentrated attention scores, i.e. high-magnitude
values in the softmax. In practice, we observed that using a
convolutional initialization scheme on vanilla PSA layers
gives a boost in early epochs, but degrades late-time perfor-
mance as the attention mechanism lazily ignores the content
information (see SM. A).

To avoid this, GPSA layers sum the content and positional
terms after the softmax, with their relative importances gov-
erned by a learnable gating parameter λh (one for each
attention head). Finally, we normalize the resulting sum of
matrices (whose terms are positive) to ensure that the result-
ing attention scores define a probability distribution. The
resulting GPSA layer is therefore parametrized as follows
(see also Fig. 4):

GPSAh(X) := normalize
[
Ah
]
XW h

val (6)

Ah
ij := (1− σ(λh)) softmax

(
Qh
iK

h>
j

)
+ σ(λh) softmax

(
vh>posrij

)
, (7)

where (normalize [A])ij = Aij/
∑
kAik and σ : x 7→

1/(1+e−x) is the sigmoid function. By setting the gating
parameter λh to a large positive value at initialization, one
has σ(λh) ' 1 : the GPSA bases its attention purely on
position, dispensing with the need of setting Wqry and
Wkey to zero as in Eq. 5. However, to avoid the ConViT
staying stuck at λh � 1, we initialize λh = 1 for all layers
and all heads.

Architectural details The ViT slices input images of size
224 into 16× 16 non-overlapping patches of 14× 14 pixels
and embeds them into vectors of dimension Demb = 64Nh
using a convolutional stem. It then propagates the patches
through 12 blocks which keep their dimensionality constant.
Each block consists in a SA layer followed by a 2-layer
Feed-Forward Network (FFN) with GeLU activation, both

equipped with residual connections. The ConViT is simply
a ViT where the first 10 blocks replace the SA layers by
GPSA layers with a convolutional initialization.

Similar to language Transformers like BERT (Devlin et al.,
2018), the ViT uses an extra “class token”, appended to the
sequence of patches to predict the class of the input. Since
this class token does not carry any positional information,
the SA layers of the ViT do not use positional attention:
the positional information is instead injected to each patch
before the first layer, by adding a learnable positional em-
bedding of dimension Demb. As GPSA layers involve posi-
tional attention, they are not well suited for the class token
approach. We solve this problem by appending the class
token to the patches after the last GPSA layer, similarly to
what is done in (Touvron et al., 2021b) (see Fig. 4)1.

For fairness, and since they are computationally cheap, we
keep the absolute positional embeddings of the ViT active
in the ConViT. However, as shown in SM. F, the ConViT
relies much less on them, since the GPSA layers already use
relative positional encodings. Hence, the absolute positional
embeddings could easily be removed, dispensing with the
need to interpolate the embeddings when changing the input
resolution (the relative positional encodings simply need to
be resampled according to Eq. 5, as performed automatically
in our open-source implementation).

Training details We based our ConVit on the DeiT (Tou-
vron et al., 2020), a hyperparameter-optimized version of
the ViT which has been open-sourced2. Thanks to its ability
to achieve competitive results without using any external
data, the DeiT both an excellent baseline and relatively easy
to train: the largest model (DeiT-B) only requires a few days
of training on 8 GPUs.

To mimic 2× 2, 3× 3 and 4× 4 convolutional filters, we
consider three different ConViT models with 4, 9 and 16
attention heads (see Tab. 1). Their number of heads are
slightly larger than the DeiT-Ti, ConViT-S and ConViT-B
of Touvron et al. (2020), which respectively use 3, 6 and 12
attention heads. To obtain models of similar sizes, we use
two methods of comparison.

• To establish a direct comparison with Touvron et al.
(2020), we lower the embedding dimension of the Con-
ViTs to Demb/Nh = 48 instead of 64 used for the
DeiTs. Importantly, we leave all hyperparameters
(scheduling, data-augmentation, regularization) pre-
sented in (Touvron et al., 2020) unchanged in order to

1We also experimented incorporating the class token as an
extra patch of the image to which all heads pay attention to at
initialization, but results were worse than concatenating the class
token after the GPSA layers (not shown).

2https://github.com/facebookresearch/deit

https://github.com/facebookresearch/deit
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Name Model Nh Demb Size Flops Speed Top-1 Top-5

Ti DeiT 3 192 6M 1G 1442 72.2 -
ConViT 4 192 6M 1G 734 73.1 91.7

Ti+ DeiT 4 256 10M 2G 1036 75.9 93.2
ConViT 4 256 10M 2G 625 76.7 93.6

S DeiT 6 384 22M 4.3G 587 79.8 -
ConViT 9 432 27M 5.4G 305 81.3 95.7

S+ DeiT 9 576 48M 10G 480 79.0 94.4
ConViT 9 576 48M 10G 382 82.2 95.9

B DeiT 12 768 86M 17G 187 81.8 -
ConViT 16 768 86M 17G 141 82.4 95.9

B+ DeiT 16 1024 152M 30G 114 77.5 93.5
ConViT 16 1024 152M 30G 96 82.5 95.9

Table 1. Performance of the models considered, trained from scratch on ImageNet. Speed is the number of images processed per
second on a Nvidia Quadro GP100 GPU at batch size 128. Top-1 accuracy is measured on ImageNet-1k test set without distillation (see
SM. B for distillation). The results for DeiT-Ti, DeiT-S and DeiT-B are reported from (Touvron et al., 2020).

Train Top-1 Top-5
size DeiT ConViT Gap DeiT ConViT Gap

5% 34.8 47.8 37% 57.8 70.7 22%
10% 48.0 59.6 24% 71.5 80.3 12%
30% 66.1 73.7 12% 86.0 90.7 5%
50% 74.6 78.2 5% 91.8 93.8 2%

100% 79.9 81.4 2% 95.0 95.8 1%

Table 2. The convolutional inductive bias strongly improves
sample efficiency. We compare the top-1 and top-5 accuracy
of our ConViT-S with that of the DeiT-S, both trained using the
original hyperparameters of the DeiT (Touvron et al., 2020), as
well as the relative improvement of the ConViT over the DeiT.
Both models are trained on a subsampled version of ImageNet-1k,
where we only keep a variable fraction (leftmost column) of the
images of each class for training.

achieve a fair comparison. The resulting models are
named ConViT-Ti, ConViT-S and ConViT-B.

• We also trained DeiTs and ConViTs using the same
number of heads and Demb/Nh = 64, to ensure that
the improvement due to ConViT is not simply due to
the larger number of heads (Touvron et al., 2021b).
This leads to slightly larger models denoted with a “+”
in Tab. 1. To maintain stable training while fitting these
models on 8 GPUs, we lowered the learning rate from
0.0005 to 0.0004 and the batch size from 1024 to 512.
These minimal hyperparameter changes lead the DeiT-
B+ to perform less well than the DeiT-S+, which is not
the case for the ConViT, suggesting a higher stability
to hyperparameter changes.

Performance of the ConViT In Tab. 1, we display the
top-1 accuracy achieved by these models evaluated on the
ImageNet test set after 300 epochs of training, alongside

their number of parameters, number of flops and throughput.
Each ConViT outperforms its DeiT of same size and same
number of flops by a margin. Importantly, although the
positional self-attention does slow down the throughput
of the ConViTs, they also outperform the DeiTs at equal
throughput. For example, The ConViT-S+ reaches a top-
1 of 82.2%, outperforming the original DeiT-B with less
parameters and higher throughput. Without any tuning, the
ConViT also reaches high performance on CIFAR100, see
SM. C where we also report learning curves.

Note that our ConViT is compatible with the distillation
methods introduced in Touvron et al. (2020) at no extra cost.
As shown in SM. B, hard distillation improves performance,
enabling the hard-distilled ConViT-S+ to reach 82.9% top-1
accuracy, on the same footing as the hard-distilled DeiT-
B with half the number of parameters. However, while
distillation requires an additional forward pass through a
pre-trained CNN at each step of training, ConViT has no
such requirement, providing similar benefits to distillation
without additonal computational requirements.

Sample efficiency of the ConViT In Tab. 2, we investi-
gate the sample-efficiency of the ConViT in a systematic
way, by subsampling each class of the ImageNet-1k dataset
by a fraction f = {0.05, 0.1, 0.3, 0.5, 1} while multiply-
ing the number of epochs by 1/f so that the total number
images presented to the model remains constant. As one
might expect, the top-1 accuracy of both the DeiT-S and its
ConViT-S counterpart drops as f decreases. However, the
ConViT suffers much less: while training on only 10% of
the data, the ConVit reaches 59.5% top-1 accuracy, com-
pared to 46.5% for its DeiT counterpart.

This result can be directly compared to (Zhai et al., 2019),
which after testing several thousand convolutional models
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reaches a top-1 accuracy of 56.4%; the ConViT is therefore
highly competitive in terms of sample efficiency. These find-
ings confirm our hypothesis that the convolutional inductive
bias is most helpful on small datasets, as depicted in Fig. 1.

4. Investigating the role of locality
In this section, we demonstrate that locality is naturally
encouraged in standard SA layers, and examine how the
ConViT benefits from locality being imposed at initializa-
tion.

SA layers are pulled towards locality We begin by in-
vestigating whether the hypothesis that PSA layers are nat-
urally encouraged to become “local” over the course of
training (Cordonnier et al., 2019) holds for the vanilla SA
layers used in ViTs, which do not benefit from positional
attention. To quantify this, we define a measure of “nonlo-
cality” by summing, for each query patch i, the distances
‖δij‖ to all the key patches j weighted by their attention
scoreAij . We average the number obtained over the query
patch to obtain the nonlocality metric of head h, which
can then be averaged over the attention heads to obtain the
nonlocality of the whole layer `:

D`,h
loc :=

1

L

∑
ij

Ah,`
ij ‖δij‖,

D`
loc :=

1

Nh

∑
h

D`,h
loc (8)

Intuitively,Dloc is the number of patches between the center
of attention and the query patch: the further the attention
heads look from the query patch, the higher the nonlocality.

In Fig. 5 (left panel), we show how the nonlocality metric
evolves during training across the 12 layers of a DeiT-S
trained for 300 epochs on ImageNet. During the first few
epochs, the nonlocality falls from its initial value in all
layers, confirming that the DeiT becomes more “convolu-
tional”. During the later stages of training, the nonlocality
metric stays low for lower layers, and gradually climbs back
up for upper layers, revealing that the latter capture long
range dependencies, as observed for language Transform-
ers (Sukhbaatar et al., 2019).

These observations are particularly clear when examining
the attention maps (Fig. 15 of the SM), and point to the
beneficial effect of locality in lower layers. In Fig. 10 of
the SM., we also show that the nonlocality metric is lower
when training with distillation from a convolutional network
as in Touvron et al. (2020), suggesting that the locality of
the teacher is partly transferred to the student (Abnar et al.,
2020).
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Figure 5. SA layers try to become local, GPSA layers escape
locality. We plot the nonlocality metric defined in Eq. 8, averaged
over a batch of 1024 images: the higher, the further the attention
heads look from the query pixel. We trained the DeiT-S and
ConViT-S for 300 epochs on ImageNet. Similar results for DeiT-
Ti/ConViT-Ti and DeiT-B/ConViT-B are shown in SM. D.
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Figure 6. The gating parameters reveal the inner workings of
the ConViT. For each layer, the colored lines (one for each of the
9 attention heads) quantify how much attention head h pays to
positional information versus content, i.e. the value of σ(λh), see
Eq. 7. The black line represents the value averaged over all heads.
We trained the ConViT-S for 300 epochs on ImageNet. Similar
results for ConViT-Ti and ConViT-B are shown in SM D.

GPSA layers escape locality In the ConViT, strong lo-
cality is imposed at the beginning of training in the GPSA
layers thanks to the convolutional initialization. In Fig. 5
(right panel), we see that this local configuration is escaped
throughout training, as the nonlocality metric grows in all
the GPSA layers. However, the nonlocality at the end of
training is lower than that reached by the DeiT, showing
that some information about the initialization is preserved
throughout training. Interestingly, the final nonlocality does
not increase monotonically throughout the layers as for the
DeiT. The first layer and the final layers strongly escape
locality, whereas the intermediate layers (particularly the
second layer) stay more local.

To gain more understanding, we examine the dynamics of
the gating parameters in Fig. 6. We see that in all layers,
the average gating parameter Ehσ(λh) (in black), which
reflects the average amount of attention paid to positional
information versus content, decreases throughout training.
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This quantity reaches 0 in layers 6-10, meaning that posi-
tional information is practically ignored. However, in layers
1-5, some of the attention heads keep a high value of σ(λh),
hence take advantage of positional information. Interest-
ingly, the ConViT-Ti only uses positional information up
to layer 4, whereas the ConViT-B uses it up to layer 6 (see
App. D), suggesting that larger models - which are more
under-specified - benefit more from the convolutional prior.
These observations highlight the usefulness of the gating
parameter in terms of interpretability.

The inner workings of the ConViT are further revealed by
the attention maps of Fig. 7, which are obtained by prop-
agating an embedded input image through the layers and
selecting a query patch at the center of the image3. In layer
10, (bottom row), the attention maps of DeiT and ConViT
look qualitatively similar: they both perform content-based
attention. In layer 2 however (top row), the attention maps
of the ConViT are more varied: some heads pay attention
to content (heads 1 and 2) whereas other focus mainly on
position (heads 3 and 4). Among the heads which focus on
position, some stay highly localized (head 4) whereas others
broaden their attention span (head 3). The interested reader
can find more attention maps in SM. E.

Ref. Train
gating

Conv
init

Train
GPSA

Use
GPSA

Full
data

10%
data

a (ConViT) 3 3 3 3 82.2 59.7
b 7 3 3 3 82.0 57.4
c 3 7 3 3 81.4 56.9
d 7 7 3 3 81.6 54.6

e (DeiT) 7 7 7 7 79.1 47.8
f 7 3 7 3 78.6 54.3
g 7 7 7 3 73.7 44.8

Table 3. Gating and convolutional initialization play nicely to-
gether. We ran an ablation study on the ConViT-S+ trained for 300
epochs on the full ImageNet training set and on 10% of the train-
ing data. From the left column to right column, we experimented
freezing the gating parameters to 0, removing the convolutional
initialization, freezing the GPSA layers and removing them alto-
gether.

Strong locality is desirable We next investigate how the
performance of the ConViT is affected by two important hy-
perparameters of the ConViT: the locality strength, α, which
determines how focused the heads are around their center of
attention, and the number of SA layers replaced by GPSA
layers. We examined the effects of these hyperparameters
on ConViT-S, trained on the first 100 classes of ImageNet.
As shown in Fig. 8(a), final test accuracy increases both with
the locality strength and with the number of GPSA layers;
in other words, the more convolutional, the better.

3We do not show the attention paid to the class token in the SA
layers
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Figure 7. The ConViT learns more diverse attention maps.
Left: input image which is embedded then fed into the models. The
query patch is highlighted by a red box and the colormap is loga-
rithmic to better reveal details. Center: attention maps obtained
by a DeiT-Ti after 300 epochs of training on ImageNet. Right:
Same for ConViT-Ti. In each map, we indicated the value of the
gating parameter in a color varying from white (for heads paying
attention to content) to red (for heads paying attention to position).
Attention maps for more images and heads are shown in SM. E.

In Fig. 8(b), we show how performance at various stages of
training is impacted by the presence of GPSA layers. We
see that the boost due to GPSA is particularly strong during
the early stages of training: after 20 epochs, using 9 GPSA
layers leads the test-accuracy to almost double, suggesting
that the convolution initialization gives the model a substan-
tial “head start”. This speedup is of practical interest in
itself, on top of the boost in final performance.

Ablation study In Tab. 3, we present an ablation on the
ConViT, denoted as [a]. We experiment removing the posi-
tional gating [b]4, the convolutional initialization [c], both
gating and the convolutional initialization [d], and the GPSA
altogether ([e], which leaves us with a plain DeiT).

Surprisingly, on full ImageNet, GPSA without gating [d]
already brings a substantial benefit over the DeiT (+2.5),
which is mildly increased by the convolutional initializa-
tion ([b], +2.9). As for gating, it helps a little in presence

4To remove gating, we freeze all gating parameters to λ = 0 so
that the same amount of attention is paid to content and position.
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Figure 8. The beneficial effect of locality. Left: As we increase
the locality strength (i.e. how focused each attention head is its
associated patch) and the number of GPSA layers of a ConViT-S+,
the final top-1 accuracy increases significantly. Right: The benefi-
cial effect of locality is particularly strong in the early epochs.

of the convolutional initialization ([a], +3.1), and is un-
helpful otherwise. These mild improvements due to gating
and convolutional initialization (likely due to performance
saturation above 80% top-1) become much clearer in the
low data regime. Here, GPSA alone brings +6.8, with an
extra +2.3 coming from gating, +2.8 from convolution ini-
tialization and +5.1 with the two together, illustrating their
complementarity.

We also investigated the performance of the ConViT with
all GPSA layers frozen, leaving only the FFNs to be trained
in the first 10 layers. As one could expect, performance
is strongly degraded in the full data regime if we initial-
ize the GPSA layers randomly ([f], -5.4 compared to the
DeiT). However, the convolutional initialization remarkably
enables the frozen ConViT to reach a very decent perfor-
mance, almost equalling that of the DeiT ([e], -0.5). In
other words, replacing SA layers by random “convolutions”
hardly impacts performance. In the low data regime, the
frozen ConViT even outperforms the DeiT by a margin
(+6.5). This naturally begs the question: is attention really
key to the success of ViTs (Dong et al., 2021; Tolstikhin
et al., 2021; Touvron et al., 2021a)?

5. Conclusion and perspectives
The present work investigates the importance of initializa-
tion and inductive biases in learning with vision transform-
ers. By showing that one can take advantage of convolu-
tional constraints in a soft way, we merge the benefits of
architectural priors and expressive power. The result is a sim-
ple recipe that improves trainability and sample efficiency,
without increasing model size or requiring any tuning.

Our approach can be summarized as follows: instead of
interleaving convolutional layers with SA layers as done
in hybrid models, let the layers decide whether to be con-
volutional or not by adjusting a set of gating parameters.
More generally, combining the biases of varied architec-
tures and letting the model choose which ones are best for a
given task could become a promising direction, reducing the

need for greedy architectural search while offering higher
interpretability.

Another direction which will be explored in future work
is the following: if SA layers benefit from being initial-
ized as random convolutions, could one reduce even more
drastically their sample complexity by initializing them as
pre-trained convolutions?
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A. The importance of positional gating
In the main text, we discussed the importance of using GPSA layers instead of the standard PSA layers, where content
and positional information are summed before the softmax and lead the attention heads to focus only on the positional
information. We give evidence for this claim in Fig. 9, where we train a ConViT-B for 300 epochs on ImageNet, but
replace the GPSA by standard PSA. The convolutional initialization of the PSA still gives the ConViT a large advantage
over the DeiT baseline early in training. However, the ConViT stays in the convolutional configuration and ignores the
content information, as can be seen by looking at the attention maps (not shown). Later in training, the DeiT catches up and
surpasses the performance of the ConViT by utilizing content information.
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Figure 9. Convolutional initialization without GPSA is helfpul during early training but deteriorates final performance. We
trained the ConViT-B along with its DeiT-B counterpart for 300 epochs on ImageNet, replacing the GPSA layers of the ConViT-B by
vanilla PSA layers.

B. The effect of distillation
Nonlocality In Fig. 10, we compare the nonlocality curves of Fig. 5 of the main text with those obtained when the DeiT is
trained via hard distillation from a RegNetY-16GF (84M parameters) (Radosavovic et al., 2020), as in Touvron et al. (2020).
In the distillation setup, the nonlocality still drops in the early epochs of training, but increases less at late times compared to
without distillation. Hence, the final internal states of the DeiT are more “local” due to the distillation. This suggests that
knowledge distillation transfers the locality of the convolutional teacher to the student, in line with the results of (Abnar
et al., 2020).

Performance The hard distillation introduced in Touvron et al. (2020) greatly improves the performance of the DeiT. We
have verified the complementarity of their distillation methods with our ConViT. In the same way as in the DeiT paper, we
used a RegNet-16GF teacher and experimented hard distillation during 300 epochs on ImageNet. The results we obtain are
summarized in Tab. 4.

Method DeiT-S (22M) DeiT-B (86M) ConViT-S+ (48M)

No distillation 79.8 81.8 82.2
Hard distillation 80.9 83.0 82.9

Table 4. Top-1 accuracies of the ConViT-S+ compared to the DeiT-S and DeiT-B, both trained for 300 epochs on ImageNet.

Just like the DeiT, the ConViT benefits from distillation, albeit somewhat less than the DeiT, as can be seen from the DeiT-B
performing less well than the ConViT-S+ without distillation but better with distillation. This hints to the fact that the
convolutional inductive bias transferred from the teacher is redundant with its own convolutional prior.

Nevertheless, the performance improvement obtained by the ConViT with hard distillation demonstrates that instantiating
soft inductive biases directly in a model can yield benefits on top of those obtained by instantiating such biases indirectly, in
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Figure 10. Distillation pulls the DeiT towards a more local configuration. We plotted the nonlocality metric defined in Eq. 8 throughout
training, for the DeiT-S trained on ImageNet. Left: regular training. Right: training with hard distillation from a RegNet teacher, by means
of the distillation introduced in (Touvron et al., 2020).

this case via distillation.

C. Further performance results
In Fig. 11, we display the time evolution of the top-1 accuracy of our ConViT+ models on CIFAR100, ImageNet and
subsampled ImageNet, along with a comparison with the corresponding DeiT+ models.

For CIFAR100, we kept all hyperparameters unchanged, but rescaled the images to 224× 224 and increased the number
of epochs (adapting the learning rate schedule correspondingly) to mimic the ImageNet scenario. After 1000 epochs, the
ConViTs shows clear signs of overfitting, but reach impressive performances (82.1% top-1 accuracy with 10M parameters,
which is better than the EfficientNets reported in (Zhao et al., 2020)).
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(a) CIFAR100
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(b) ImageNet-1k
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(c) Subsampled ImageNet

Figure 11. The convolutional inductive bias is particularly useful for large models applied to small datasets. Each of the three
panels displays the top-1 accuracy of the ConViT+ model and their corresponding DeiT+ throughout training, as well as the relative
improvement between the best top-1 accuracy reached by the DeiT+ and that reached by the ConViT+. Left: tiny, small and base models
trained for 3000 epochs on CIFAR100. Middle: tiny, small and base models trained for 300 epochs on ImageNet-1k. The relative
improvement of the ConViT over the DeiT increases with model size. Right: small model trained on a subsampled version of ImageNet-1k,
where we only keep a fraction f ∈ {0.05, 0.1, 0.3, 0.5, 1} of the images of each class. The relative improvement of the ConViT over the
DeiT increases as the dataset becomes smaller.

In Fig. 12, we study the impact of the various ingredients of the ConViT (presence and number of GPSA layers, gating
parameters, convolutional initialization) on the dynamics of learning.
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Figure 12. Impact of various ingredients of the ConViT on the dynamics of learning. In both cases, we train the ConViT-S+ for 300
epochs on first 100 classes of ImageNet. Left: ablation on number of GPSA layers, as in Fig. 8. Right: ablation on various ingredients
of the ConViT, as in Tab. 3. The baseline is the DeiT-S+ (pink). We experimented (i) replacing the 10 first SA layers by GPSA layers
(“GPSA”) (ii) freezing the gating parameter of the GPSA layers (“frozen gate”); (iii) removing the convolutional initialization (“conv”);
(iv) freezing all attention modules in the GPSA layers (“frozen”). The final top-1 accuracy of the various models trained is reported in the
legend.

D. Effect of model size
In Fig. 13, we show the analog of Fig. 5 of the main text for the tiny and base models. Results are qualitatively similar
to those observed for the small model. Interestingly, the first layers of DeiT-B and ConViT-B reach significantly higher
nonlocality than those of the DeiT-Ti and ConViT-Ti.

In Fig. 14, we show the analog of Fig. 6 of the main text for the tiny and base models. Again, results are qualitatively
similar: the average weight of the positional attention, Ehσ(λh), decreases over time, so that more attention goes to the
content of the image. Note that in the ConViT-Ti, only the first 4 layers still pay attention to position at the end of training
(average gating parameter smaller than one), whereas for ConViT-S, the 5 first layers still do, and for the ConViT-B, the 6
first layers still do. This suggests that the larger (i.e. the more underspecified) the model is, the more layers make use of the
convolutional prior.
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(a) DeiT-Ti and ConViT-Ti
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(b) DeiT-B and ConViT-B

Figure 13. The bigger the model, the more non-local the attention. We plotted the nonlocality metric defined in Eq. 8 of the main text
(the higher, the further the attention heads look from the query pixel) throughout 300 epochs of training on ImageNet-1k.
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(b) ConViT-B

Figure 14. The bigger the model, the more layers pay attention to position. We plotted the gating parameters of various heads and
various layers, as in Fig. 6 of the main text (the lower, the less attention is paid to positional information) throughout 300 epochs of
training on ImageNet-1k. Note that the ConViT-Ti only has 4 attention heads whereas the ConViT-B has 16, hence the different number of
curves.
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E. Attention maps
Attention maps of the DeiT reveal locality In Fig. 15, we give some visual evidence for the fact that vanilla SA layers
extract local information by averaging the attention map of the first and tenth layer of the DeiT over 100 images. Before
training, the maps look essentially random. After training, however, most of the attention heads of the first layer focus on the
query pixel and its immediate surroundings, whereas the attention heads of the tenth layer capture long-range dependencies.
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Figure 15. The averaged attention maps of the DeiT reveal locality at the end of training. To better visualise the center of attention,
we averaged the attention maps over 100 images. Top: before training, the attention patterns exhibit a random structure. Bottom: after
training, most of the attention is devoted to the query pixel, and the rest is focused on its immediate surroundings.

Attention maps of the ConViT reveal the diversity of the attention heads In Fig. 16, we show a comparison of the
attention maps of Deit-Ti and ConViT-Ti for different images of the ImageNet validation set. In Fig. 17, we compare the
attention maps of DeiT-S and ConViT-S.

In all cases, results are qualitatively similar: the DeiT attention maps look similar across different heads and different layers,
whereas those of the ConViT perform very different operations. Notice that in the second layer, the third and forth head
focus stay local whereas the first two heads focus on content. In the last layer, all the heads ignore positional information,
focusing only on content.
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(c) ConViT

Figure 16. Left: input image which is embedded then fed into the models. The query patch is highlighted by a red box and the colormap is
logarithmic to better reveal details. Center: attention maps obtained by a DeiT-Ti after 300 epochs of training on ImageNet. Right: Same
for ConViT-Ti. In each map, we indicated the value of the gating parameter in a color varying from white (for heads paying attention to
content) to red (for heads paying attention to position).



ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases

(a) Input image

La
ye

r 
1

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6

La
ye

r 
4

La
ye

r 
7

La
ye

r 
10

(b) DeiT

La
ye

r 
1

( ) = 0.01
Head 1

( ) = 0.52
Head 2

( ) = 0.01
Head 3

( ) = 0.00
Head 4

( ) = 0.04
Head 5

( ) = 0.92
Head 6

( ) = 0.07
Head 7

( ) = 0.01
Head 8

( ) = 0.07
Head 9

La
ye

r 
4

( ) = 0.00 ( ) = 0.82 ( ) = 0.03 ( ) = 0.82 ( ) = 0.14 ( ) = 0.84 ( ) = 0.75 ( ) = 0.00 ( ) = 0.34

La
ye

r 
7

( ) = 0.15 ( ) = 0.00 ( ) = 0.59 ( ) = 0.00 ( ) = 0.04 ( ) = 0.02 ( ) = 0.04 ( ) = 0.00 ( ) = 0.00

La
ye

r 
10

( ) = 0.00 ( ) = 0.00 ( ) = 0.00 ( ) = 0.00 ( ) = 0.00 ( ) = 0.00 ( ) = 0.00 ( ) = 0.00 ( ) = 0.00

(c) ConViT

Figure 17. Attention maps obtained by a DeiT-S and ConViT-S after 300 epochs of training on ImageNet. In each map, we indicated the
value of the gating parameter in a color varying from white (for heads paying attention to content) to red (for heads paying attention to
position).
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F. Further ablations
In this section, we explore masking off various parts of the network to understand which are most crucial.

In Tab. 5, we explore the importance of the absolute positional embeddings injected to the input in both the DeiT and
ConViT. We see that masking them off at test time a mild impact on accuracy for the ConViT, but a significant impact for
the DeiT, which is expected as the ConViT already has relative positional information in each of the GPSA layers. This also
shows that the absolute positional information contained in the embeddings is not very useful.

In Tab. 6, we explore the relative importance of the positional and content information by masking them off at test time. To
do so, we manually set the gating parameter σ(λ) to 1 (no content attention) or 0 (no positional attention). In the first GPSA
layers, both procedures affect performance similarly, signalling that positional and content information are both useful.
However in the last GPSA layers, masking the content information kills performance, whereas masking the positional
information does not, confirming that content information is more crucial.

Model Mask pos embed No mask

DeiT-Ti 38.3 72.2
ConViT-Ti 67.1 73.1

Table 5. Performance on ImageNet with the positional embeddings masked off at test time.

# layers masked Mask content Mask position No mask

3 62.3 63.5 73.1
5 35.0 53.1 73.1

10 1.3 46.8 73.1

Table 6. Performance of ConViT-Ti on ImageNet with positional or content attention masked off at test time.


