
1

Pruning Convolutional Neural Networks
with Self-Supervision

Mathilde Caron1,2, Ari Morcos1, Piotr Bojanowski1, Julien Mairal2, and Armand Joulin1

1Facebook AI Research
2Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France

Abstract—Convolutional neural networks trained without supervision come close to matching performance with supervised
pre-training, but sometimes at the cost of an even higher number of parameters. Extracting subnetworks from these large unsupervised
convnets with preserved performance is of particular interest to make them less computationally intensive. Typical pruning methods
operate during training on a task while trying to maintain the performance of the pruned network on the same task. However, in
self-supervised feature learning, the training objective is agnostic on the representation transferability to downstream tasks. Thus,
preserving performance for this objective does not ensure that the pruned subnetwork remains effective for solving downstream tasks.
In this work, we investigate the use of standard pruning methods, developed primarily for supervised learning, for networks trained
without labels (i.e. on self-supervised tasks). We show that pruned masks obtained with or without labels reach comparable
performance when re-trained on labels, suggesting that pruning operates similarly for self-supervised and supervised learning.
Interestingly, we also find that pruning preserves the transfer performance of self-supervised subnetwork representations.

Index Terms—Deep Learning, Computer Vision, Unsupervised Feature Learning, Pruning

F

1 INTRODUCTION

CONVOLUTIONAL neural networks (convnets) pre-
trained without supervision are emerging from

the image recognition community with performance
approaching that of supervised ImageNet pre-training [1],
[2]. They usually contain a huge number of parameters:
some even count hundreds of millions of weights [3],
[4] which is an order of magnitude bigger than standard
networks used for supervised pre-training [5]. Extracting
subnetworks from these large unsupervised convnets with
preserved representation power would make both training
and use of their visual features less computationally
intensive. A well-established solution to reduce parameter-
counts of large neural networks is to prune part of
their weights [6]. However, pruning has been originally
developed in a fully-supervised context: it is usually
operated while or after training on a supervised task
with the goal of preserving the validation accuracy of a
subnetwork on the same task [7], [8]. Yet, in self-supervised
learning, the task used to train a network is often merely
a proxy [9], [10], thus preserving performance on this
surrogate does not guarantee preserved transferability of
the resulting subnetwork. To the best of our knowledge,
there is no study in the current literature on the impact of
pruning on networks pre-trained with self-supervised tasks.

For these reasons, we explore in this work if pruning
methods that were developed for supervised learning can
be used for networks trained from unlabeled data only.
The main questions about pruning networks trained with
self-supervision we are trying to answer are the following:
How subnetworks obtained from self-supervision compare
to subnetworks pruned with labels? Can subnetworks

pruned from unlabeled data be used for supervised tasks?
Does pruning networks pre-trained with self-supervision
deteriorate the quality of their subsequent features when
transferred to different downstream tasks?

To investigate these questions, we propose a simple
pipeline based on well-established methods from the
unstructured pruning and self-supervised learning
literatures. In particular, we use the magnitude-based
iterative pruning technique of Han et al. [8], which
compresses networks by alternatively training with labels
and pruning the network parameters with the smallest
magnitude. Recent works have shown that subnetworks
uncovered by Han et al. [8] lead to accuracy comparable
with that of an unpruned network when re-trained from
a selected inherited set of weights termed the “winning
tickets” [11], [12] or even from random initialization though
for moderate pruning rates [13]. In our work, we build
upon these works and simply replace semantic labels
by pseudo-labels given by self-supervision pretext tasks.
Interestingly, Morcos et al. [14] have shown that winning
tickets initializations can be re-used across different datasets
with a common domain (natural images) trained on the
same task (labels classification). In contrast, in this work, we
explore among other things if winning tickets initializations
from self-supervised tasks can be used as initialization for
training label classification on a commun dataset.

Our experiments show that pruning self-supervised net-
works with a standard pruning method preserves the re-
sulting features quality when evaluated on different down-
stream tasks. We also observe that transferring an already

ar
X

iv
:2

00
1.

03
55

4v
1

 [
cs

.C
V

]
 1

0
Ja

n
20

20

2

pruned pre-trained network gives better transfer perfor-
mance than pruning a pre-trained network directly on the
transfer objective. This is convenient since the subsequent
optimal scenario is to provide already pruned pre-trained
networks, thus dispensing the need for users to operate
any pruning on the target task. Beside, we find that the
pruned subnetworks obtained with self-supervision can
be re-trained successfully on ImageNet labels classifica-
tion, and are even on par with supervised pruning when
randomly re-initialized. More precisely, the quality of the
pruned mask alone is similar between supervised and self-
supervised pruning but the winning tickets initializations of
self-supervised subnetworks are not as good starting points
as the ones inherited from label classification task directly.
Overall, we find that pruning networks trained with self-
supervision works well, in the sense that the transfer per-
formance of the pruned subnetworks is preserved even for
high pruning rates and they can be re-trained from scratch
on labels. As a matter of fact, we choose to conduct most
of our experiments on ImageNet; we remark indeed that
deep networks trained on smaller datasets such as CIFAR-
10 are already sparse at convergence, making conclusions
drawn about pruning potentially misleading if this effect is
not accounted for.

2 RELATED WORK

Pruning. Pruning is an approach to model compression [8]
and regularization [6] in which weights or nodes/filters
are removed, typically by clamping them to zero (see the
work of Liu et al. [13] for a review of the different pruning
methods). It is an active research which has primarily
focused on pruning an already trained network [8], [15]
or pruning while training [16]. In particular, the iterative
pruning during training of Han et al. [8] has been extended
to continuous pruning [17], layer-wise pruning [18]
and with weight sharing [19]. Pruning during training
has been considered with `0 regularization [7], binary
convolution [20] or using the hashing trick for weight
sharing [21].

The lottery tickets hypothesis. The lottery tickets
hypothesis of Frankle and Carbin [11] explores the
possibility of pruning early in training by revealing that
some sparse subnetworks inside neural networks can reach
accuracy matching that of the full network when trained
in isolation. Setting the weights of the sparse architecture
appropriately is critical to reach good performance. Frankle
and Carbin [11] provide a proof of concept of the lottery
ticket hypothesis on small vision benchmarks while
Frankle et al. [12] conduct further experiments with deeper
networks, which result in the introduction of rewinding
and a consequent revision to the original hypothesis.
Rewinding indeed consists in resetting the parameters
to their value “early in training” rather than their value
from before training. Liu et al. [13] question the importance
of weights resetting and observe for moderate pruning
rates and without rewinding that the pruned architecture
alone is responsible for successful training. Zhou et al. [22]
conduct ablation studies on the lottery tickets hypothesis
and show, among others, the importance of the signs

of the reset weights. Yu et al. [23] investigate the lottery
ticket hypothesis in reinforcement learning problems.
These works aim at better understanding winning ticket
initializations properties; however none of them investigate
their relationship with self-supervised tasks. Interestingly,
Morcos et al. [14] show that winning tickets initializations
transfer across different image classification datasets, thus
suggesting that winning tickets do not entirely overfit to
the particular data distribution on which they are found.

Learning without supervision. In self-supervised learning,
a network is trained on a pretext task that does not require
any manual annotations. Two main broad types of self-
supervised learning approaches appear in the litterature.
The first one consists of methods where the pretext task is
created by manipulating the input data. This includes pre-
dicting relative spatial location, colorizing grayscale images
or predicting the rotation applied to an image [4], [9], [10],
[24], [25], [26], [27], [28]. The second one is composed of
methods [29], [30], [31], [32] where images are treated as
different instances that should be discriminated from one
another. Representations learnt using self-supervision are
most often evaluated via transfer learning to a supervised
task. The better the pre-training with self-supervised learn-
ing, the better the performance on the transfer task. In this
work, we broaden the scope of evaluation of self-supervised
methods by evaluating subnetworks pruned with these
pretext tasks.

3 APPROACH

In this work, our goal is to study how a standard pruning
method primarily developed for supervised learning
applies to networks trained without annotations. We use
well-established methods from the unstructured pruning
and self-supervised literatures to do so. Specifically, we
adopt the magnitude-based unstructured iterative pruning
process of Han et al. [8] to extract sparse subnetworks from
an over-parameterized network. Following recent works,
we reset the subsequent subnetworks to a selected set of
weights [11], [12] or randomly re-initialize them [13]. The
self-supervised tasks we consider are rotation classification
of Gidaris et al. [10] and the “Exemplar” approach of
Dosovitskiy et al. [29]. We provide details about our
implementation at the end of this section.

Preliminaries. We represent a subnetwork (W,m) by the
association of a mask m in {0, 1}d and weight W in Rd. The
convolutional network, or convnet, function associated with
a subnetwork is denoted by fm�W , where� is element-wise
product. We refer to the vector obtained at the penultimate
layer of a convnet as feature or representation. Such a rep-
resentation is pruned if m has at least one zero component.
The subnetwork weights W may be pre-trained, such that the
corresponding feature function can be transferred to down-
stream tasks. On the other hand, the subnetwork weights
W may be initialization weights, such that the corresponding
convnet fm�W can be re-trained from scratch.

3

00.20.40.60.81
fraction of remaining weights

40

50

60

70
m

AP
VOC07 linear SVM

RotNet
Exemplar
NPID

00.20.40.60.81
fraction of remaining weights

25

30

35

40

45

va
l a

cc
@

1

Places205 linear classifier

00.20.40.60.81
fraction of remaining weights

30

35

40

45

50

55

va
l a

cc
@

1

ImageNet linear classifier

Fig. 1: Transfer learning performance of pruned representations from self-supervised methods as we vary the pruning rate.
We show performance when training linear SVMs on VOC2007 and linear classifiers with mini-batch stochastic gradient
descent on Places205 and ImageNet. For reference, on VOC07 dataset, the performance for supervised ImageNet features
and for random features are respectively 88mAP and 7.7mAP (numbers from Goyal et al. [2]). We do not prune NPID
networks for extreme rates (i.e. less than 0.1 of remaining weights) because this is too computationally intensive.

3.1 Unstructured magnitude-based pruning
Pruned mask. Han et al. [8] propose an algorithm to prune
networks by estimating which weights are important.
This approach consists of compressing networks by
alternatively minimizing a training objective and pruning
the network parameters with the smallest magnitude, hence
progressively reducing the network size. At each pruning
iteration, the network is first trained to convergence, thus
arriving at weights W ∗. Then, the mask m is updated
by setting to zero the elements already masked plus the
smallest elements of {|W ∗[j]| |m[j] 6= 0}.

Weight resetting. Frankle and Carbin [11] refine this
approach and propose to also find a good initialization
W for each subnetwork such that it may be re-trained
from scratch. On small-scale computer vision datasets
and with shallow architectures, they indeed show that
sub-architectures found with iterative magnitude pruning
can be re-trained from the start, as long as their weights are
reset to their initial values. Further experiments, however,
have shown that this observation does not exactly hold
for more challenging benchmarks such as ImageNet [12],
[13]. Specifically, Frankle et al. [12] found that resetting
weights to their value from an early stage in optimization
can still lead to good trainable subnetworks. Formally, at
each pruning iteration, the subnetwork is reset to weights
Wk obtained after k weight updates from the first pruning
iteration. Liu et al. [13], on the other hand, argue that the
mask m only is responsible for the good performance of
the subnetwork and thus its weights W may be randomly
drawn at initialization. In our work, we consider both
weights initialization schemes: winning tickets of Frankle et
al. [12] or random re-initialization [13].

3.2 Self-supervised learning
We prune networks without supervision by simply setting
the training objective in the method of Han et al. [8] to a
self-supervised pretext task. We consider two prominent
self-supervised methods: RotNet [10] and the Exemplar
approach of Dosovitskiy et al. [29] following the implemen-
tation of Doersch et al. [33]. RotNet consists in predicting the

rotation which was applied to the input image among a set
of 4 possible large rotations: {0◦, 90◦, 180◦, 270◦}. Exemplar
is a classification problem where each image and its trans-
formations form a class, leading to as many classes as there
are training examples. We choose these two self-supervised
tasks because they have opposite characteristics: RotNet
encourages discriminative features to data transformations
and has a small number of classes, while Exemplar encour-
ages invariance to data transformations and its output space
dimension is large. We also investigate the non-parametric
instance discrimination (NPID) approach of Wu et al. [31],
which is a variant of the Exemplar method that uses a non-
parametric softmax layer and a memory bank of feature
vectors.

3.3 Implementation

Pruning. We follow closely the winning tickets setup
of Morcos et al. [14]. At each pruning iteration, we
globally prune 20% of the remaining weights. The last
fully-connected and batch-norm layers parameters are
left unpruned. We apply up to 30 pruning iterations
to reach extreme pruning rates where only 0.1% of the
weights remain. Overall we report results for 14 different
pruning rates ranging from 20% to 99.9%, thus covering
both moderate and extreme sparsity. The weight resetting
parameter is set to 3 × 1, 3M samples, which corresponds
to 3 epochs on full ImageNet. More details about this late
resetting parameter are in the supplementary material.

Datasets and models. In this work, we choose to mostly
work with ImageNet dataset [34], though we also report
some results for CIFAR-10 [35]. We use ResNet-50 on Im-
ageNet and ResNet-18 for CIFAR-10 [5]. In supplemen-
tary material, we also report results with more architec-
tures: AlexNet [36] and the modified VGG-19 [37] of Mor-
cos et al. [14] (multilayer perceptron (MLP) is replaced by
a fully connected layer). Our experiments on ImageNet
are computationally-demanding since pruning can involve
training deep networks from scratch up to 31 times. For this
reason, we distribute most of our runs across several GPUs.
Models are trained with weight decay and stochastic gradi-
ent descent with a momentum of 0.9. We use PyTorch [38]

4

00.20.40.60.81
fraction of remaining weights

60

65

70

75

80
m

AP
RotNet

Pre-training pruning
Transfer pruning

00.20.40.60.81
fraction of remaining weights

60

65

70

75

80 Exemplar

00.20.40.60.81
fraction of remaining weights

60

65

70

75

80

m
AP

NPID

Fig. 2: Transfer learning performance of representations pruned during pre-training or during transfer on VOC07
classification task with full fine-tuning as we vary the pruning rate. For reference, finetuning unpruned supervised
ImageNet features gives 90.3 while training from random initialization gives 48.4 (numbers from Goyal et al. [2]).

version 1.0 for all our experiments. Full training details for
each of our experiments are in the supplementary material.
We run each experiment with 6 (CIFAR-10) or 3 (ImageNet)
random seeds, and show the mean and standard error of the
accuracy.

4 EXPERIMENTAL STUDY

In our experimental study, we first evaluate the pruned
representations: we investigate the effect of pruning on the
subsequent self-supervised representations. We also eval-
uate pruning depending on whether it is performed with
or without supervision. Finally, we explore the impact of
adding a little supervision during pruning.

4.1 Evaluating Pruned Self-Supervised Features

In this section, we evaluate the quality of pruned self-
supervised features by transferring them to different
downstream tasks. We show that pruning self-supervised
features preserves their transfer performance for a wide
range of pruning rates.

Feature transfer performance when pruning. In this
experiment, we are interested in the features transferability
as we vary the amount of pruned weights in the
representation function. We follow part of the benchmark
proposed by Goyal et al. [2] for evaluating unsupervised
representations. In particular, we focus on training linear
classifiers for VOC07 [39], Places205 [40] and ImageNet [34]
labels classification tasks on top of the final representations
given by a pre-trained pruned convnet. In Figure 1,
we observe that pruning up to 90% of the networks
weights (i.e. there is less than 0.1 remaining weights)
does not deteriorate the resulting features quality when
evaluated with linear classifier on VOC07, Places205
and ImageNet datasets. Surprisingly, we observe that
for RotNet and Exemplar self-supervised approaches,
pruning the features even improves slightly their transfer
performance. An explanation may be that by pruning, task-
specific information is removed from the features which
leads to a better transferability. However, this is not the
case for the best performing self-supervised method NPID:
the quality of the representation remains constant when
pruning at moderate rates. In any case, when features are

severely pruned (i.e. less than 5% of the weights remain),
their quality drops significantly.

Pruning during pre-training or during transfer? One
difficulty of pruning while pre-training is that the training
objective used to prune the network (i.e. the pre-training
task) is not directly related to the transfer task. Thus, we
study in this experiment if pruning directly using the
target objective might be a better strategy to obtain good
performance on this same target task. In Figure 2, we
evaluate pruned unsupervised features by transferring
them to Pascal VOC 2007 [39] classification task. The
pre-trained features are used as weight initialization, then
all the network parameters are trained (i.e. finetuned) on
VOC07. The features are either pruned during pre-training
(i.e. on RotNet or Exemplar self-supervised tasks) or during
transfer (i.e. when finetuning on Pascal VOC07 classification
task directly). On Pascal VOC07, we train the models for
90 epochs on combined train and val sets, starting with a
learning rate of 0.01 decayed by a factor 10 at epochs 50, 65
and 80; we report test central crop evaluation. We observe
in Figure 2 that finetuning a pruned pre-trained network
gives better transfer performance than finetuning while
pruning. This observation has an interesting real-world
impact: pruned pre-trained models can be released for
users with limited computational budget without the need
of additional pruning on the transfer task from their side.

4.2 Evaluating Self-Supervised Masks

In the previous section we evaluate pruned representations.
In this section, we evaluate more specifically the masks
and corresponding weight initializations obtained from self-
supervised pruning. In particular, we show that these can
be re-trained successfully on a supervised task on the same
dataset. Finally, we investigate the effect of adding some
label supervision during pruning.

4.2.1 Evaluating Self-Supervised Pruning

In this set of experiments, we evaluate the quality of the
pruned masks and corresponding weight initializations
obtained by pruning with a self-supervised objective.

5

1.0 0.2 0.04 0.008 0.002
remaining weights

10

30

50

70
va

l a
cc

@
1

Random Reinit

Labels
RotNet
Exemplar
Random

1.0 0.2 0.04 0.008 0.002
remaining weights

10

30

50

70
Winning Tickets

(a) ImageNet

1.0 0.2 0.04 0.008 0.002
remaining weights

60

70

80

90

tes
t a

cc
@

1

Random Reinit

1.0 0.2 0.04 0.008 0.002
remaining weights

60

70

80

90 Winning Tickets

(b) CIFAR-10

Fig. 3: We report ImageNet val (a) and CIFAR-10 test (b) top-1 accuracy when re-training subnetworks pruned with self-
supervised tasks: RotNet or Exemplar. The x-axis corresponds to different rates of remaining weights. We use two different
schemes for weight initialization: “Random Reinit”: random re-initialization of the subnetwork [13]; “Winning Tickets”:
inherited from early phase of training following the lottery tickets hypothesis [12]. We also show performance when
re-training subnetworks pruned with labels (“Labels”) or randomly pruned subnetworks (“Random”) which consist of
randomly permuted masks and randomly drawn weights from the initialization distribution. On CIFAR-10, deep models
are highly sparse with only approximately ∼ 15% of non-zero weights. Thus, we adjust the random baseline (dashed
curve) to start with the correct mask at the natural level of network sparsity (details in Section 4.3).

Experimental setting. We evaluate the pruned subnetworks
by training them from their initialization on semantic
label classification. The difficulty is the following: unlike
the subnetworks pruned with labels, the ones pruned
with self-supervised tasks have not seen the labels during
pruning and are consequently fully “label-agnostic”. We
compare them to networks pruned with labels directly
and to randomly pruned subnetworks re-trained on label
classification. For the remaining of the paper, we use a
logarithmic scale for the pruning rates axis in order to
focus on situations where very few weights remain. Indeed,
for moderate pruning rates, a random pruning baseline
is competitive with supervised pruning. Moreover, we
observe that pruning deep networks on CIFAR-10 is trivial
for moderate rates: we detail this finding in Section 4.3.

Re-training self-supervised masks on label classification.
In Figure 3, we show validation accuracy of pruned
subnetworks re-trained on label classification, at different
pruning ratios. We show results with ResNet-50 for
ImageNet and ResNet-18 for CIFAR-10 and investigate
more architectures in the supplementary material with
similar conclusions. We observe in Figure 3 that
subnetworks pruned without any supervision are still
capable of reaching good accuracy when re-trained on label
classification. When the subnetworks start from random
initialization (“Random Reinit”), self-supervised pruning
even matches the performance of supervised pruning.
However, with winning tickets initializations (“Winning
Tickets”), subnetworks pruned without labels perform
significantly below supervised pruning, but remain way
above the random pruning level. Note that the gap of
performance between self-supervised pruning and random
pruning increases when the network is severely pruned.
Overall, this experiment suggests that self-supervised
pruning gives pruned masks and weight initializations
which are much better than random pruning when
evaluated on label classification, and even on par with
labels pruning when randomly re-initialized.

Winning tickets versus random initialization. For
pruning with supervision (“Labels” curves in Figure 3),
we observe that our results provide further empirical
evidence to the lottery tickets hypothesis of Frankle et
al. [12]. Indeed, we observe in Figure 3 that resetting the
weights (winning tickets strategy) of the masks pruned
with labels gives significantly better accuracy compared
to random re-initialization. Interestingly, this is not the
case for subnetworks pruned without labels: winning
tickets initialization gives only a very slight boost (or even
no boost at all) of performance compared to randomly
re-initialization for subnetworks pruned with RotNet
or Exemplar self-supervised tasks. Overall, these results
suggest that the quality of the pruned mask m itself is
similar for supervised or self-supervised pruning but the
weights of self-supervised subnetworks are not as good
starting points as the ones inherited from label classification
task directly.

Layerwise Pruning. We further investigate the difference
between supervised and self-supervised winning tickets on
ImageNet by looking at their performance as we prune
up to a given depth. In Figure 4, we verify that when
pruning only the first convolutional layers this gap remains
narrow, while it becomes much wider when pruning higher
level layers. Indeed, it has been observed that most self-
supervised approaches produce good shallow and mid-level
features but poorer high level features [41]. This means that
we should expect the quality of self-supervised pruning
to depend on the depth of the pruning. We confirm this
intuition and show the difference between self-supervised
and supervised pruning increases with pruning depth.

4.2.2 Semi-Supervised Pruning

Finally in this experiment, we investigate the impact
of using part of the labels for pruning. We find in
previous experiments (Section 4.2.1) that pruned masks
uncovered by supervision or self-supervision lead to similar
performance when re-trained on labels classification,
however, winning tickets initializations from labels are

6

1.0 0.5 0.25 0.125 0.062
remaining weights

60
65
70
75
80

va
l a

cc
@

1

block 1

Labels
RotNet
Random

1.0 0.5 0.25 0.125 0.062
remaining weights

60
65
70
75
80 blocks 1 and 2

1.0 0.5 0.25 0.125 0.062
remaining weights

60
65
70
75
80 blocks 1, 2 and 3

1.0 0.5 0.25 0.125 0.062
remaining weights

60
65
70
75
80 all: blocks 1, 2, 3 and 4

Fig. 4: ImageNet top 1 validation accuracy of winning tickets found by pruning partly or entirely (all) a network with labels
classification or RotNet. We show for reference results when the corresponding network layers are randomly pruned.

globally better than ones from pretext self-supervised tasks.
We show in this section that adding a little bit of label
supervision for pruning improves the resulting winning
tickets initializations performance on label classification,
suggesting that these initializations are task-dependant to
some extent.

Experimental setting. In this experiment, we consider
10% of ImageNet labels. We either sample this labeled
subset per class (i.e. we preserve all the classes) or we
sample a subset of classes and keep all the images for
these classes (i.e. we only have 100 classes). Either way,
we get approximately 130k labeled images and use the
remaining images without their label. We use S4L, the
semi-supervised setting of Zhai et al. [42] since they show
better performance on ImageNet classification compared to
virtual adversarial training [43] or pseudo-labeling [44]. In
particular, we use the RotNet variant of S4L: the training
loss corresponds to the sum of a label classification loss
applied to labeled examples only, and a RotNet loss applied
to all data samples. We compare this semi-supervised
pruning setting to pruning without any labels (masks
from Section 4.2.1) and to pruning with few labels only
without adding a RotNet loss.We also show for reference the
performance of subnetworks obtained with fully-supervised
or random pruning. We follow the same methodology from
Section 4.2.1 to evaluate pruning masks: we re-train
the subsequent pruned masks and corresponding winning
tickets weight initializations on ImageNet classification task.

Pruning with limited supervision. In Figure 5, we observe
that adding 10% of labels (S4L) for pruning leads to signifi-
cantly improved performance for the resulting subnetworks
compared to pruning with no labels (RotNet). We previously
observed that the pruned masks are of similar quality be-
tween supervised and unsupervised pruning (see Figure 3).
Hence, the improvement brought by adding labels is likely
to be mainly due to better winning tickets initializations.
Since both semi-supervised pruning and even supervised
pruning with few data perform better than pruning with no
labels, we conclude that winning tickets initializations are
labels-dependant to some extent. Indeed, we surprisingly
observe that simply using 10% labeled images and nothing
else for pruning (“10% Lab” in Figure 5) provides better
winning tickets initializations than pruning on the entire,
unlabeled dataset (“RotNet”). Interestingly, we observe that
this gap of performance is much wider when winning
tickets are inherited from a preserved set of classes (Fig. 5a)
rather than a reduced one (Fig. 5b), which suggests that win-

1.0 0.2 0.04 0.008
remaining weights

60

65

70

75

va
l a

cc

(a) Preserved # of classes

1.0 0.2 0.04 0.008
remaining weights

60

65

70

75

Labels
S4L
10% Lab
RotNet
Random

(b) Preserved # of images per class

Fig. 5: We report ImageNet validation top-1 accuracy when
re-training subnetworks pruned with varying level of access
to labels supervision. “Labels” corresponds to classical su-
pervised pruning on all the labels, “S4L” is semi-supervised
pruning with S4L RotNet method, “10% Lab” is supervised
pruning on a reduced dataset and “RotNet” corresponds to
unsupervised pruning. We either sample the 10% labeled
subset by selecting 10% images per class (a) or by selecting
10% of classes (b).

ning tickets initializations are somewhat “task”-dependant.
Finally, subnetworks pruned in the semi-supervised setting
(“S4L”) perform better in general than both the unsuper-
vised (“RotNet”) and low-data (“10% Lab”) ones which
leads to think that their respective properties capture differ-
ent statistics that add up to generate better winning tickets
initializations.

4.3 Caveat about pruning deep networks on CIFAR-10

Somewhat surprisingly, we find that prior to any pruning,
a large proportion of the weights of a deep architecture
trained on CIFAR-10 has converged naturally to zero during
training. For example, we observe in Figure 6 that ∼ 85% of
the weights of a VGG-19 and ∼ 80% of that of a ResNet-
18 at convergence are zeroed (we show results for more
architectures in the supplementary material). As a result,
it is trivial to prune these networks without any loss in
accuracy. Unstructured magnitude-based pruning acts here
as training since are freezed to zero weights that were going
to zero anyway [22]. Overall, while pruning on CIFAR-10
large networks originally tuned for ImageNet at rates above
their natural level of sparsity (∼ 80%) is still meaningful,
analyzing pruning below this rate may not be conclusive.

In the random global pruning baseline (which can re-
move non zero weights) of Figure 3, pruning at rates below
the natural sparsity of the network degrades accuracy, while
pruning of weights that are already zeroed has no effect.

7

0% 25% 50% 75% 100%
sorted weights

10 1

10 3

10 5

10 7

we
ig

ht
 m

ag
ni

tu
de

CIFAR-10: VGG-19
CIFAR-10: ResNet-18
ImageNet: VGG-19
ImageNet: ResNet-18

Fig. 6: Magnitude of the weights of a trained network on two
different datasets: CIFAR-10 (green) and ImageNet (red). We
perform thresholding at machine precision value (bottom of
y-axis). On CIFAR-10, a trained VGG-19 is 84.5% sparse
while a trained ResNet-18 is 80.3% sparse.

Inconveniently, this performance gap carries over to higher
pruning rates (in which we are interested in) and can lead to
misleading interpretations. For fair comparison, we adjust
the random mask baseline in Figure 3: we remove this
effect by first pruning the weights that naturally converge to
zero after training. Then, we randomly mask the remaining
non-zeroed weights to get different final desired pruning
rates. The remaining non-masked weights are randomly
initialized. This baseline therefore corrects for the natural
sparsity present in CIFAR-10 networks.

5 CONCLUSION

Our work takes a first step into studying the pruning of
networks trained with self-supervised tasks. We believe this
is an emergent and important problem due to the recent
rise of highly over-parametrized unsupervised pre-trained
networks. In our study, we empirically provide different
insights about pruning self-supervised networks. Indeed,
we show that a well-established pruning method for su-
pervised learning actually works well for self-supervised
networks too, in the sense that the quality of the pruned
representation is not deteriorated and the pruned masks can
be re-trained to good performance on ImageNet labels. This
is somewhat surprising given that labels are not seen during
pruning and given that the goal of the pruning algorithm
we use is to preserve the performance on the training task,
which is agnostic to downstream tasks or ground-truth
labels.

We also find several limitations to our study. First, we
have observed pruning through the scope of unstructured
magnitude-based pruning only. Future work might general-
ize our observations to a wider range of pruning methods,
in particular structured pruning. Second, we have observed
while conducting our experiments that winning tickets ini-
tializations are particularly sensitive to the late resetting
parameter (see the supplementary material for a discussion
about our choice of rewind parameter). The definition of
“early in training” is somehow ill-defined: network weights
change much more for the first epochs than for the last ones.
Thus, by resetting weights early in their optimization, they

contain a vast amount of information. Third, we find that
pruning large modern architectures on CIFAR-10 should be
done with caution as these networks tend to be sparse at
convergence, making unstructured pruning at rates below
80% particularly simple.

ACKNOWLEDGMENT

We thank the members of Thoth and FAIR teams for their
help and fruitful discussions. Julien Mairal was funded by
the ERC grant number 714381 (SOLARIS project).

REFERENCES

[1] M. Caron, P. Bojanowski, J. Mairal, and A. Joulin, “Unsupervised
pre-training of image features on non-curated data,” in Proceedings
of the International Conference on Computer Vision (ICCV), 2019.

[2] P. Goyal, D. Mahajan, A. Gupta, and I. Misra, “Scaling and bench-
marking self-supervised visual representation learning,” Proceed-
ings of the International Conference on Computer Vision (ICCV), 2019.

[3] P. Bachman, R. D. Hjelm, and W. Buchwalter, “Learning represen-
tations by maximizing mutual information across views,” arXiv
preprint arXiv:1906.00910, 2019.

[4] O. J. Hénaff, A. Razavi, C. Doersch, S. Eslami, and A. v. d. Oord,
“Data-efficient image recognition with contrastive predictive cod-
ing,” arXiv preprint arXiv:1905.09272, 2019.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[6] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,”
in Advances in Neural Information Processing Systems (NIPS), 1990.

[7] C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural
networks through l 0 regularization,” in International Conference on
Learning Representations (ICLR), 2018.

[8] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Advances in Neural
Information Processing Systems (NIPS), 2015.

[9] M. Noroozi and P. Favaro, “Unsupervised learning of visual
representations by solving jigsaw puzzles,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2016.

[10] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised repre-
sentation learning by predicting image rotations,” in International
Conference on Learning Representations (ICLR), 2018.

[11] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding
sparse, trainable neural networks,” in International Conference on
Learning Representations (ICLR), 2019.

[12] J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin, “Lin-
ear mode connectivity and the lottery ticket hypothesis,” arXiv
preprint arXiv:1912.05671, 2019.

[13] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the
value of network pruning,” in International Conference on Learning
Representations (ICLR), 2019.

[14] A. S. Morcos, H. Yu, M. Paganini, and Y. Tian, “One ticket to win
them all: generalizing lottery ticket initializations across datasets
and optimizers,” Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[15] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” in International Conference on Learning
Representations (ICLR), 2017.

[16] A. Prakash, J. Storer, D. Florencio, and C. Zhang, “Repr: Improved
training of convolutional filters,” in Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[17] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for
efficient dnns,” in Advances in Neural Information Processing Systems
(NIPS), 2016.

[18] X. Dong, S. Chen, and S. Pan, “Learning to prune deep neural
networks via layer-wise optimal brain surgeon,” in Advances in
Neural Information Processing Systems (NIPS), 2017.

[19] K. Ullrich, E. Meeds, and M. Welling, “Soft weight-sharing for
neural network compression,” in International Conference on Learn-
ing Representations (ICLR), 2017.

[20] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-
net: Imagenet classification using binary convolutional neural
networks,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2016.

8

[21] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Com-
pressing neural networks with the hashing trick,” in Proceedings of
the International Conference on Machine Learning (ICML), 2015.

[22] H. Zhou, J. Lan, R. Liu, and J. Yosinski, “Deconstructing lottery
tickets: Zeros, signs, and the supermask,” in ”Workshop on Identi-
fying and Understanding Deep Learning Phenomena (ICML)”, 2019.

[23] H. Yu, S. Edunov, Y. Tian, and A. S. Morcos, “Playing the lottery
with rewards and multiple languages: lottery tickets in RL and
NLP,” International Conference on Learning Representations (ICLR),
2020.

[24] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual
representation learning by context prediction,” in Proceedings of
the International Conference on Computer Vision (ICCV), 2015.

[25] X. Wang and A. Gupta, “Unsupervised learning of visual represen-
tations using videos,” in Proceedings of the International Conference
on Computer Vision (ICCV), 2015.

[26] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,”
in Proceedings of the European Conference on Computer Vision (ECCV),
2016.

[27] D. Pathak, R. Girshick, P. Dollár, T. Darrell, and B. Hariharan,
“Learning features by watching objects move,” in Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[28] Y. Tian, D. Krishnan, and P. Isola, “Contrastive multiview coding,”
arXiv preprint arXiv:1906.05849, 2019.

[29] A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller, and
T. Brox, “Discriminative unsupervised feature learning with exem-
plar convolutional neural networks,” IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 2016.

[30] P. Bojanowski and A. Joulin, “Unsupervised learning by predicting
noise,” in Proceedings of the International Conference on Machine
Learning (ICML), 2017.

[31] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learn-
ing via non-parametric instance discrimination,” in Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[32] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep cluster-
ing for unsupervised learning of visual features,” in Proceedings of
the European Conference on Computer Vision (ECCV), 2018.

[33] C. Doersch and A. Zisserman, “Multi-task self-supervised visual
learning,” in Proceedings of the International Conference on Computer
Vision (ICCV), 2017.

[34] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Ima-
genet: A large-scale hierarchical image database,” in Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR),
2009.

[35] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” Tech. Rep., 2009.

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in
Neural Information Processing Systems (NIPS), 2012.

[37] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[38] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differ-
entiation in pytorch,” 2017.

[39] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman, “The pascal visual object classes (voc) challenge,”
International Journal of Computer Vision (IJCV), 2010.

[40] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learn-
ing deep features for scene recognition using places database,” in
Advances in Neural Information Processing Systems (NIPS), 2014.

[41] L. Jing and Y. Tian, “Self-supervised visual feature learning with
deep neural networks: A survey,” IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 2019.

[42] X. Zhai, A. Oliver, A. Kolesnikov, and L. Beyer, “S4l: Self-
supervised semi-supervised learning,” Proceedings of the Interna-
tional Conference on Computer Vision (ICCV), 2019.

[43] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii, “Virtual adver-
sarial training: a regularization method for supervised and semi-
supervised learning,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 2018.

[44] D.-H. Lee, “Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks,” in Work-
shop on Challenges in Representation Learning, (ICML), 2013.

[45] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent
with warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

Mathilde Caron is currently a second-year PhD
student both at Inria in the Thoth team and at
Facebook AI Research (FAIR) working on large-
scale unsupervised representation learning for
vision. Her supervisors are Julien Mairal, Piotr
Bojanowski and Armand Joulin. Previously, she
did her master thesis on clustering for unsuper-
vised learning of visual representation at FAIR
under the supervision of Piotr Bojanowski. Be-
fore that, she graduated from both Ecole poly-
technique and KTH Royal Institute of Technology

where she was mostly interested in applied mathematics and statistical
learning.

Ari Morcos is a research scientist at Face-
book AI Research (FAIR) in Menlo Park, working
on using neuroscience-inspired approaches to
understand and build better machine learning
systems. Previously, he worked at DeepMind in
London. He earned his PhD working with Chris
Harvey at Harvard University. For his thesis, he
developed methods to understand how neuronal
circuits perform the computations necessary for
complex behavior. In particular, his research fo-
cused on how parietal cortex contributes to ev-

idence accumulation decision-making. For his undergraduate work, he
attended UCSD, where he worked with Fred Gage to investigate the role
of REST/NRSF in adult neurogenesis.

Piotr Bojanowski is a research scientist at
Facebook AI Research, working on machine
learning applied to computer vision and natural
language processing. His main research interest
revolve around large-scale unsupervised learn-
ing. Before joining Facebook, in 2016, he got a
PhD in Computer Science at the Willow team
(INRIA Paris) under the supervision of Jean
Ponce, Cordelia Schmid, Ivan Laptev and Josef
Sivic. He graduated from Ecole polytechnique in
2013 and received a Masters Degree in Mathe-

matics, Machine Learning and Computer Vision (MVA).

Julien Mairal (SM16) received the Graduate de-
gree from the Ecole Polytechnique, Palaiseau,
France, in 2005, and the Ph.D. degree from
Ecole Normale Superieure, Cachan, France, in
2010. He was a Postdoctoral Researcher at the
Statistics Department, UC Berkeley. In 2012, he
joined Inria, Grenoble, France, where he is cur-
rently a Research Scientist. His research inter-
ests include machine learning, computer vision,
mathematical optimization, and statistical image
and signal processing. In 2016, he received a

Starting Grant from the European Research Council and in 2017, he
received the IEEE PAMI young research award. He was awarded the
Cor Baayen prize in 2013, the IEEE PAMI young research award in 2017
and the test-of-time award at ICML 2019.

Armand Joulin is a research manager at Face-
book AI Research. Prior to this position, he was
a postdoctoral fellow at Stanford University work-
ing with Fei-Fei Li and Daphne Koller. He did
his PhD in Inria and Ecole Normale Superieure,
under the supervision of Francis Bach and Jean
Ponce. He did his undergrad at Ecole Polytech-
nique. His subjects of interest are machine learn-
ing, computer vision and natural language pro-
cessing.

9

6 SUPPLEMENTARY MATERIAL

6.1 Late resetting parameter
We follow [12] and use late resetting (or rewind) for the win-
ning tickets generation process. Indeed, before re-training
a winning ticket, we reset its weights to their value “early
in training” of the full over-parameterized network. In our
work, we set the late resetting parameter to 1 epoch on
CIFAR-10. However, when dataset size, total number of
epochs, mini-batch sizes or learning rate vary, it becomes
more complicated to choose a rewind criterion that guar-
antees a fair comparison between all settings. A choice
can be to rewind at a point where “the same amount of
information” has been processed. Thus, in our work, we
choose to set the rewind parameter to 3×1, 280, 000 samples
for all our experiments on ImageNet, which corresponds to
3 epochs on full ImageNet. We describe in Table 1 to what
this rewind parameter corresponds to in terms of number
of epoch, number of data samples seen, number of gradient
update and percentage of total training for our different ex-
periments. Moreover, we show in Figure 7 the performance
of winning tickets generated using 10% of ImageNet with
different values of rewind. Each of the considered value
corresponds to keeping one of the criteria (number of epoch,
number of data samples seen, number of gradient update or
percentage of total training) fixed compared to the rewind
parameter on full ImageNet (first row of Table 1).

100502512.56.23.1
% of remaining weights

0.3

0.5

0.7

Im
ag

eN
et

va
l a

cc
@

1

ImNet 100%
ImNet10% - rewind: 3 epochs
ImNet10% - rewind: 3.3% of full training
ImNet10% - rewind: 2500 gradient steps
ImNet10% - rewind: ~ 3 x 1.3M samples seen
Random mask

Fig. 7: ImageNet top 1 validation accuracy of winning
tickets initialization found with a subset of 10% of ImageNet
dataset. We show the influence of different values for the
late resetting parameter.

epochs # samples seen # grad updates % training

ImNet 100% 3 ∼ 3× 1, 280, 000 2500 3.3%

ImNet 10% 30 ∼ 3× 1, 280, 000 5000 15%

TABLE 1

6.2 More architectures for evaluating self-supervised
masks
Re-training self-supervised masks on label classification.
More results for this experiment can be found in Figure 8.

Layerwise winning tickets. We show more results about the
layerwise winning tickets experiment. We generate winning

tickets by pruning only the n first convolutional layers of
a network, and leaving the remaining of the network un-
pruned. On AlexNet, we consider 4 situations. From left to
right in Figure 9), we prune the first convolutiona layer; up
to the third convolutiona layer; up to the fifth convolutional
layer; or the whole network. In Figure 9, we verify that for
the convolutional layers the gap of performance between
labels winning tickets initializations and self-supervised
ones remains narrow, while it becomes much wider when
pruning the MLP. Note that, even if this effect is particularly
visible with an AlexNet, it is happening with most self-
supervisedly trained network as can be seen in the main
paper.

6.3 Sparse trained networks on CIFAR-10

In this appendix, in Figure 10, we provide results on more
architectures about the proportion of weights zeroed during
training on CIFAR-10 compared to ImageNet. Note that we
do not consider the batch-norm layers parameters, nor the
parameters of the last fully-connected layer (since we do not
prune it in our setting). For all the considered VGGs we use
the modified version of [14], replacing the final MLP by a
fully connected layer.

6.4 Hyperparameters and model details

We detail in this appendix the different hyperparameters
used in our experiments. We use Adam optimizer on
CIFAR-10. On ImageNet, unless specified otherwise, we per-
form standard data augmentation consisting in croppings
of random sizes and aspect ratios and horizontal flips [36]).
On CIFAR-10, we use horizontal flips and croppings of fixed
size on a 2-padded input image.

• ImageNet Labels - full dataset - AlexNet: we train
for 90 epochs with a total batch-size of 4096 dis-
tributed over 8 GPUs (512 samples per GPU), learn-
ing rate of 0.4, weight decay of 0.0001. We decay the
learning rate by a factor 10 at epochs 30 and 60.

• ImageNet Labels - full dataset - ResNet-50: we
train for 90 epochs with a total batch-size of 1536
distributed over 16 GPUs (96 samples per GPU),
learning rate of 0.1, weight decay of 0.0001. We
decay the learning rate by a factor 10 at epochs 50,
65 and 80.

• ImageNet Labels - 10% dataset: we train for 200
epochs with a total batch-size of 768 distributed over
8 GPUs (96 samples per GPU), learning rate of 0.1
warmed up during the first 5 epochs, weight decay
of 0.001. We decay the learning rate by a factor 10 at
epochs 140, 160 and 180.

• ImageNet Labels - 10% of classes: we train for 200
epochs with a total batch-size of 768 distributed over
8 GPUs (96 samples per GPU), learning rate of 0.3
warmed up during the first 5 epochs, weight decay
of 0.0003. We decay the learning rate by a factor 10
at epochs 140, 160 and 180.

• ImageNet Semi-supervised RotNet: We reproduce
the semi-supervised method of [42] and follow pre-
cisely their hyperparameter. We train for 200 epochs
with a total batch-size of 2048 distributed over 32

10

100 25 6 1.6 0.4
% remaining weights

0.5
0.6
0.7
0.8
0.9

tes
t a

cc
@

1
VGG-19 CIFAR-10

Labels
RotNet
Exemplar
Random
Random Adjust

100 25 6 1.6 0.4
% remaining weights

0.5
0.6
0.7
0.8
0.9

ResNet-18 CIFAR-10

100 25 6 1.6 0.4
% remaining weights

0.1

0.3

0.5

0.7

va
l a

cc
@

1

ResNet-50 ImageNet

100 25 6 1.6 0.4
% remaining weights

0.1

0.3

0.5

0.7
AlexNet ImageNet

(a) Random Reinit

100 25 6 1.6 0.4
% remaining weights

0.5
0.6
0.7
0.8
0.9

tes
t a

cc
@

1

VGG-19 CIFAR-10

100 25 6 1.6 0.4
% remaining weights

0.5
0.6
0.7
0.8
0.9

ResNet-18 CIFAR-10

100 25 6 1.6 0.4
% remaining weights

0.1

0.3

0.5

0.7

va
l a

cc
@

1

ResNet-50 ImageNet

100 25 6 1.6 0.4
% remaining weights

0.1

0.3

0.5

0.7
AlexNet ImageNet

(b) Winning Tickets

Fig. 8: We report CIFAR-10 test (left columns) and ImageNet val (right columns) top-1 accuracy for subnetworks pruned
without labels, i.e. with self-supervised tasks: RotNet or Exemplar. The x-axis corresponds to different pruning ratios. We
use two different schemes for weight initialization: Random Reinit (a): random re-initialization of the subnetwork [13];
Winning Tickets (b): inherited from early phase of training like the lottery tickets hypothesis [12]. Architectures are VGG-
19 and ResNet-18 for CIFAR-10 and ResNet-50 and AlexNet for ImageNet. We compare the performance with standard
supervised pruning (dark blue) and random (grey) subnetworks which consist of randomly permuted masks and randomly
drawn weights from the initialization distribution. On CIFAR-10, deep models are highly sparse with only ∼ 15% of non-
zero weights. Thus, we adjust the random baseline to start with the correct mask at the natural level of network sparsity.

100 50 25 12.5 6.2 3.1
% of remaining weights

0.4

0.5

0.6

Im
Ne

t v
al

ac
c@

1 AlexNet: conv 1

Labels
Rotnet
Random mask

100 50 25 12.5 6.2 3.1
% of remaining weights

0.4

0.5

0.6 AlexNet: convs 1-3

100 50 25 12.5 6.2 3.1
% of remaining weights

0.4

0.5

0.6 AlexNet: convs 1-5

100 50 25 12.5 6.2 3.1
% of remaining weights

0.4

0.5

0.6 AlexNet: all

Fig. 9: ImageNet top 1 validation accuracy of winning tickets generated by pruning partly or entirely (all) a network with
2 generation tasks: labels classification or RotNet for AlexNet. We also show for reference results when the network layers
are randomly pruned.

GPUs (64 samples per GPU), learning rate of 0.1
warmed up during the first 5 epochs, weight decay
of 0.0003. We decay the learning rate by a factor 10
at epochs 140, 160 and 180.

• ImageNet RotNet - ResNet-50: we train for 90
epochs with a total batch-size of 1536 distributed
over 16 GPUs (96 samples per GPU), learning rate of
1 warmed up during the first 5 epochs, weight decay
of 0.00001. We decay the learning rate by a factor 10
at epochs 50, 65 and 80

• ImageNet Exemplar - ResNet-50: we train for 40
epochs with a total batch-size of 1536 distributed
over 32 GPUs (48 samples per GPU), learning rate of
0.3, weight decay of 0.00001. We decay the learning
rate by a factor 10 at epochs 20 and 30. We follow the
Exemplar implementation based on triplet margin
loss from [33]. As the goal of the task is to learn
invariance to data transformation, we use data color
augmentation and random small rotations on top of

standard data augmentation scheme.
• ImageNet NPID - ResNet-50: we train for 150

epochs with a total batch-size of 1024 distributed
over 8 GPUs (128 samples per GPU), learning rate of
0.03, weight decay of 0.0001. We use 16384 negatives
and a cosine annealing learning rate schedule [45].

• ImageNet RotNet - AlexNet: we train for 90 epochs
with a total batch-size of 8192 distributed over 16
GPUs (512 samples per GPU), learning rate of 0.5
warmed up during the first 2 epochs, weight decay
of 0.00001. We decay the learning rate by a factor 10
at epochs 30 and 60.

• ImageNet Exemplar - AlexNet: we train for 30
epochs with a total batch-size of 4096 distributed
over 16 GPUs (256 samples per GPU), learning rate
of 0.1, weight decay of 0.0001. We decay the learn-
ing rate by a factor 10 at epoch 20. We follow the
Exemplar implementation based on triplet margin
loss from [33]. We use data color augmentation and

11

0% 25% 50% 75% 100%
sorted weights

10 1

10 3

10 5

10 7

we
ig

ht
 m

ag
ni

tu
de

ResNet-18
CIFAR-10
ImageNet

0% 25% 50% 75% 100%
sorted weights

10 1

10 3

10 5

10 7

we
ig

ht
 m

ag
ni

tu
de

ResNet-50
CIFAR-10
ImageNet

0% 25% 50% 75% 100%
sorted weights

10 1

10 3

10 5

10 7

we
ig

ht
 m

ag
ni

tu
de

VGG-11
CIFAR-10
ImageNet

0% 25% 50% 75% 100%
sorted weights

10 1

10 3

10 5

10 7

we
ig

ht
 m

ag
ni

tu
de

VGG-13
CIFAR-10
ImageNet

0% 25% 50% 75% 100%
sorted weights

10 1

10 3

10 5

10 7

we
ig

ht
 m

ag
ni

tu
de

VGG-16
CIFAR-10
ImageNet

0% 25% 50% 75% 100%
sorted weights

10 1

10 3

10 5

10 7

we
ig

ht
 m

ag
ni

tu
de

VGG-19
CIFAR-10
ImageNet

Fig. 10: Magnitude of the weights of a trained network on
two different datasets: CIFAR-10 (green) and ImageNet (red)
with different datasets. We perform thresholding at machine
precision value (bottom of y-axis).

random small rotations on top of standard data aug-
mentation scheme.

• CIFAR-10 Labels & RotNet - VGG-19 & ResNet-18:
we train for 160 epochs with a total batch-size of 512
on 1 GPU, learning rate of 0.001, weight decay of
0.0001. We decay the learning rate by a factor 10 at
epochs 80 and 120.

• CIFAR-10 Exemplar - VGG-19 & ResNet-18: we
train for 180 epochs with a total batch-size of 512 on 1
GPU, learning rate of 0.0003, weight decay of 0.0001.
We decay the learning rate by a factor 10 at epochs
120. As the goal of the task is to learn invariance to
data transformation, we use data color augmentation
and random small rotations on top of standard data
augmentation scheme.

	1 Introduction
	2 Related work
	3 Approach
	3.1 Unstructured magnitude-based pruning
	3.2 Self-supervised learning
	3.3 Implementation

	4 Experimental study
	4.1 Evaluating Pruned Self-Supervised Features
	4.2 Evaluating Self-Supervised Masks
	4.2.1 Evaluating Self-Supervised Pruning
	4.2.2 Semi-Supervised Pruning

	4.3 Caveat about pruning deep networks on CIFAR-10

	5 Conclusion
	References
	Biographies
	Mathilde Caron
	Ari Morcos
	Piotr Bojanowski
	Julien Mairal
	Armand Joulin

	6 Supplementary Material
	Supplementary Material
	A Late resetting parameter
	B More architectures for evaluating self-supervised masks
	C Sparse trained networks on CIFAR-10
	D Hyperparameters and model details

