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Abstract

Self-supervised learning has recently begun to rival supervised learning on computer vision
tasks. Many of the recent approaches have been based on contrastive instance discrimina-
tion (CID), in which the network is trained to recognize two augmented versions of the
same instance (a query and positive) while discriminating against a pool of other instances
(negatives). Using MoCo v2 (Chen et al., 2020c) as our testbed, we divided negatives by
their difficulty for a given query and studied which difficulty ranges were most important
for learning useful representations. We found that a small minority of negatives—just the
hardest 5%—were both necessary and sufficient for the downstream task to reach full ac-
curacy. Conversely, the easiest 95% of negatives were unnecessary and insufficient. More-
over, we found that the very hardest 0.1% of negatives were not only unnecessary but also
detrimental. Finally, we studied the properties of negatives that affect their hardness, and
found that hard negatives were more semantically similar to the query, and that some neg-
atives were more consistently easy or hard than we would expect by chance. Together,
our results indicate that negatives play heterogeneous roles and that CID may benefit from
more intelligent negative treatment.

1 Introduction

In recent years, there has been tremendous progress on self-supervised learning (SSL), a paradigm in which
representations are learned via a pre-training task that uses unlabeled data. These representations are subse-
quently used on downstream tasks, such as classification or object detection. Since SSL pre-training does not
require labels, it can leverage unlabeled data, which is generally more abundant and cheaper to obtain than la-
beled data. In computer vision, representations learned from unlabeled data have historically underperformed
representations learned directly from labeled data. Recently, however, newly proposed SSL methods such as
MoCo (He et al., 2019; Chen et al., 2020c), SimCLR (Chen et al., 2020a,b), SwAV (Caron et al., 2020), and
BYOL (Grill et al., 2020) have dramatically reduced this performance gap.

The MoCo and SimCLR pre-training tasks learn representations using a paradigm called contrastive instance
discrimination (CID). In CID, a network is trained to recognize different augmented views of the same image
(sometimes called the query and the positive) and discriminate between the query and the augmented views
of other random images from the dataset (called negatives).

Despite the empirical successes of CID, the mechanisms underlying its strong performance remain unclear.
Recent theoretical and empirical works have investigated the role of mutual information between augmenta-
tions (Tian et al., 2020), analyzed properties of the learned representations such as alignment and uniformity
(Wang & Isola, 2020), and proposed a theoretical framework (Arora et al., 2019), among others. However,
existing works on CID have not investigated the relative importance or semantic properties of different neg-
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atives, even though negatives play a central role in CID. In other areas, work on hard negative mining in
metric learning (Kaya & Bilge, 2019) and on the impact of different training examples in supervised learning
(Birodkar et al., 2019) suggests that understanding the relative importance of different training data can be
fruitful.

In this work, we empirically investigate how the difficulty of negatives affects learning. We measure difficulty
using the dot product between the normalized contrastive-space embeddings of the query and the negative;
this is also how the negatives factor into the contrastive loss. A dot product closer to 1 suggests a negative that
is more difficult to distinguish from the query. We ask how different negatives, by difficulty, affect training.
Are some negatives more important than others for downstream accuracy? If so, we ask: Which ones? To
what extent? And what makes them different?

We focus on MoCo v2 (Chen et al., 2020c) and the downstream task of linear classification on ImageNet
(Deng et al., 2009). We make the following contributions (see Figure 1 for summary):

• The easiest 95% of negatives are unnecessary and insufficient, while the top 5% hardest neg-
atives are necessary and sufficient: We reached within 0.7 percentage points of full accuracy by
training on the 5% of hardest negatives for each query, suggesting that the 95% easiest negatives are
unnecessary. In contrast, the easiest negatives are insufficient (and, therefore, the hardest negatives
are necessary): accuracy drops substantially when training only on the easiest 95% of negatives.
The hardest 5% of negatives are especially important: training on only the next hardest 5% lowers
accuracy by 15 percentage points.

• The hardest 0.1% of negatives are unnecessary and sometimes detrimental: Downstream accu-
racy is the same or, in some cases, higher when we remove these hardest negatives. These negatives
are predominately in the same ImageNet class as the query, suggesting that semantically identical
(but superficially dissimilar) negatives are unhelpful or detrimental to contrastive learning on this
task.

• Properties of negatives: Based on our observations that the importance of a negative varies with its
difficulty, we investigate the properties of negatives that affect their difficulty.

– We found that the hard negatives are more semantically similar (in terms of ImageNet classes)
to the query than easier negatives, suggesting that negatives that are more semantically similar
may tend to be more helpful for learning for this task.

– We also observed that the pattern is reversed for the≈50% of easier negatives: there, the easier
the negative, the more semantically similar it is to the query.

– There exist negatives that are more consistently hard across queries than would be expected by
random chance.

We emphasize that our primary aim is to better understand the differences between negatives and the impact
of these differences on existing methods rather than to propose a new method. However, our results suggest
that there may be unexploited opportunities to reduce the cost of modern CID methods (Chen et al., 2020c).
For any particular query, only a small fraction of the negatives are necessary. Although MoCo itself is not
designed such that ignoring easy negatives will improve performance, we believe this observation can serve
as a valuable building block for future contrastive learning methods. It also suggests that there may be further
room to choose specific examples for training—for example hard negative mining and curriculum learning
(Chen et al., 2020a; Chuang et al., 2020; Kaya & Bilge, 2019)—to reduce costs and improve performance
per data sample.

2 Methods and Preliminaries

Contrastive instance discrimination and momentum contrast. Momentum Contrast (MoCo v2) is a CID
method that reaches accuracy within 6 percentage points of supervised accuracy on ImageNet with ResNet-
50 (Chen et al., 2020c). In MoCo, the task is to learn a representation that succeeds at the following: given
a query (an augmented view of an image), correctly pick a positive (a different augmented view of the same
image) from a large set of negatives (augmented views of randomly chosen images). Our experiments focus
on aspects that are common between CID methods rather than those specific to MoCo. We discuss imple-
mentation details that may be specific to MoCo v2 here.

The MoCo v2 encoder is a ResNet-50 network. For pre-training, the outputs of this base network are fed
into a multi-layer perceptron (MLP) head; we refer to the normalized output from the MLP head as the
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Query

Semantically similar,
but not identical

Semantically identical
Super�cially dissimilar

Semantically dissimilar Neither necessary nor su�cient 
for good performance

Necessary and su�cient
for good performance

Harmful to performance

Same class negatives

Easy negatives

Hard negatives

Figure 1: Schematic summary of main results. Easy negatives are unnecessary and insufficient (green) and also tend
to be semantically dissimilar (i.e., in unrelated ImageNet classes) to the query (light blue). Hard (but not the very hardest)
negatives are necessary and sufficient (orange) and also tend to be semantically similar to the query. The very hardest
negatives are unnecessary and sometimes detrimental and also tend to be in the same class as the query (red). This is an
illustrative schematic; images and trees are not from ImageNet.

contrastive-space embedding. For downstream tasks, the MLP head is discarded and only the base network
is used; we refer to the output of the base network as the learned representation. A distinguishing feature of
MoCo is that it has two encoders, one of which is actively trained (used for the query) and the other which is
a moving average of the trained encoder (used for the positive and negatives). MoCo stores the embeddings
of each batch of positives in a large queue and uses them as negatives for future batches, enabling the use of
more negatives than can fit in a batch.

MoCo uses the InfoNCE loss (Gutmann & Hyvärinen, 2010; van den Oord et al., 2018):

Lq = − log
exp(q · k+/τ)∑K
i=1 exp(q · ki/τ)

where q is the embedding of a query (using the learned encoder), k+ is the embedding of a positive (using the
momentum encoder), and ki are the embeddings of the negatives in the queue (added using previous states of
the momentum encoder). τ is a temperature hyperparameter.

Difficulty of negatives. To compute the difficulty for a set of negatives given a particular query, we calculate
the dot product between the normalized contrastive-space embedding of each negative with the normalized
contrastive-space embedding of the query. We then sort the dot products and consider the negatives with
dot products closer to 1 to be harder negatives and those with smaller dot products to be easier negatives.
We use this terminology because it fits intuition: all else being equal, harder negatives increase the loss.
Since embeddings are normalized, the dot product is the cosine of the angle between the embeddings of the
instances and ranges from -1 to 1.

Note that difficulty is defined per query and that it is a function of the current state of the network. Thus, a
negative can be easy for some queries and hard for others, and the hardness of a negative for a given query
can vary over training epochs and across different training runs and configurations.

Experimental setting. Our experiments focus on MoCo v2 (Chen et al., 2020c), an improved version of
MoCo which combines MoCo v1 (He et al., 2019) with several features of SimCLR (Chen et al., 2020a).
We use ImageNet for pre-training and evaluate performance using linear classification on ImageNet from the
representation learned in the pre-training CID task. The network used, as in MoCo v2, is a ResNet-50 with
MLP head, and trained for 200 epochs. Unless otherwise noted, we use three replicates for all experiments;
error bars represent mean ± standard deviation.

3 Which Negatives are Necessary or Sufficient?

In this section, we examine which negatives, by difficulty, are necessary or sufficient for producing repre-
sentations during pretraining that lead to strong downstream performance. Outside of CID, there are varying
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Figure 2: Easy negatives are neither necessary nor sufficient, while hard negatives are both necessary and suf-
ficient. a-b) Top-1 (a) and Top-5 (b) performance of networks trained on only segments of 5% of negatives ordered
by difficulty. For example, 95-100% means that only the top 5% hard negatives were used for training. c-d) Top-1 (c)
and Top-5 (d) performance of networks trained on increasingly larger fractions of the easiest negatives. Error bars are
standard deviation across 3 seeds.
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Figure 3: The hardest 0.1% of negatives hurt, especially at lower temperatures. Top-1 (a) and Top-5 (b) accuracy
of networks trained on all but hard and hardest negatives, at different temperatures.

perspectives on the value of easy negatives. Research on hard negative mining suggests that harder negatives
can be more important than easier negatives for relevant tasks (Kaya & Bilge, 2019). However, in some
supervised contexts, much or all training data seems important for reaching the highest accuracy (Birodkar
et al., 2019). We aim to experimentally assess which of these perspectives applies when pre-training MoCo
v2 with CID.

To determine whether a set of negatives was necessary, we removed the corresponding negatives on each
pre-training step; if the resulting representations still led to accuracy close to baseline on the downstream
task, then we considered those negatives to have been unnecessary. To determine whether a set of negatives
was sufficient, we removed all negatives except those in that range on each pre-training step; if the resulting
representations still led to strong accuracy on the downstream task, then we considered the negatives in that
range to have been sufficient.2

The easy negatives are unnecessary; the hard negatives are sufficient. First, we asked whether the easy
negatives were necessary (or equivalently, whether the hard negatives were sufficient). That is, does the
network maintain downstream accuracy when it is pre-trained without the easy negatives? To test this, we
evaluated how accuracy changed as different subsets of negatives were removed. Interestingly, we found
that using only the hardest 5% of negatives was largely sufficient to recover baseline accuracy (Figure 2a-b,
95-100%), suggesting that the overwhelming majority of the easier negatives were unnecessary. Moreover,
the hardest 5% (95-100%) were substantially more informative than the next 5% (90-95%): top-1 accuracy
dropped by only ∼ 0.7 percentage points when trained on only the hardest 5% vs. 15 percentage points
for the next hardest 5% (90-95%) and 47 percentage points for the third 5% (85-90%; Figure 2a-b). Going
forward, we use 5% as a cutoff, calling the negatives harder than this cutoff hard and those easier than this
cutoff easy.

The easy negatives are largely insufficient; the hard negatives are necessary. We next asked whether
the easy negatives were sufficient (or, equivalently, whether the hard negatives were necessary). Although we
found in the previous section that the easy negatives were unnecessary, that does not necessarily mean they are
insufficient. For example, it could be that the easy negatives, while individually less important, collectively
provide sufficient signal for learning good representations on the downstream task. Alternatively, it is possible
that the information contained in the easy negatives is fundamentally lacking learning signals required to drive
CID; in this case, the easy negatives, even when combined together, would still be insufficient.

2We removed sets of negatives by treating them as through they were not present in the queue.
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Temperature = 0.07 Temperature = 0.2
Top 1 Acc Top 5 Acc Top 1 Acc Top 5 Acc

Baseline (remove none) 64.78 ± 0.31 85.86 ± 0.12 67.48 ± 0.07 87.93 ± 0.05
Remove 0.1% hardest 66.25 ± 0.23 86.98 ± 0.09 67.64 ± 0.22 87.88 ± 0.07
Remove same class 66.61 ± 0.10 86.96 ± 0.07 68.07 ± 0.12 88.30 ± 0.15
Remove 0.1% hardest ∩ same class 66.43 ± 0.04 86.78 ± 0.06 67.67 ± 0.02 88.09 ± 0.18
Remove 0.1% hardest ∩ different class 63.69 ± 0.04 85.44 ± 0.00 67.38 ± 0.06 87.86 ± 0.08
Remove 99.9% easiest ∩ same class 65.06 ± 0.11 85.91 ± 0.01 67.79 ± 0.07 88.05 ± 0.05

Table 1: The hardest 0.1% negatives hurt because of same-class negatives: Downstream accuracy when
removing negatives of same/different class as the query and easier/hardest negatives at different temperatures.
At temperature 0.07, accuracy improves when removing same-class negatives and/or hard negatives. At
temperature 0.2 (default), there is a similar but smaller effect.

We found that even when the easiest 95% of negatives were combined together, accuracy was ∼5% below
baseline (Figure 2c-d). In contrast, recall that using only the hardest 5% of negatives (19x fewer) achieved
top-1 performance within 0.7% of baseline (Figure 2a). Using the easiest 90% of negatives harms accuracy
even further (0-90%; Figure 2c-d). Together, these results demonstrate that the easiest negatives, even when
they comprise the vast majority of negatives, are still insufficient.

The very hardest negatives are harmful at lower temperatures. We have found that the hard negatives, i.e.
the 5% hardest, are largely necessary and sufficient for CID. However, accuracy actually improved slightly
when we removed the very hardest 0.1% of negatives (p = 0.0003 for an unpaired t-test).3 This effect was
most pronounced at lower temperatures (Figure 3); for example, at temperature 0.1, training without the
hardest 0.1% of negatives improved downstream top-1 accuracy by 0.23% and top-5 accuracy by 0.67%.
Interestingly, the effect was larger for top-5 accuracy than top-1 accuracy (compare Figure 3b with 3a). One
plausible explanation for why this improvement was sensitive to temperature is because, at lower tempera-
tures, the hardest negatives constituted a larger fraction of the loss.

One hypothesis for why the hardest negatives hurt is that some negatives are very similar to the query. Be-
cause negatives are randomly sampled, they can included augmented views of images that are near-duplicates
of the query or simply visually very similar to the query. Since the images contain identical semantic content,
the contrastive objective is effectively pushing representations of examples that are semantically identical but
superficially dissimilar apart, which would force the network to emphasize, rather than ignore, these super-
ficial dissimilarities (Figure 1). These same-class negatives may thus be harmful to learning representations
for downstream linear classification.

If this is the case, we would expect that removing same class negatives would improve performance, perhaps
even more than removing the hardest 0.1% of negatives overall. As shown in Table 1, removing same-class
negatives indeed leads to slightly higher accuracy than removing the hardest 0.1% of negatives. Removing
only the subset of the hardest 0.1% of negatives with the same class as the query accounts for all of the
improvement from removing the hardest 0.1% of negatives. Alternatively, removing only the subset of the
0.1% hardest negatives with different classes shows no improvement over baseline and in fact decreases top
1 performance at low temperature.

These results demonstrate that the accuracy benefit of removing the 0.1% hardest negatives can entirely
be accounted for by the fact that it removes many elements of the same class as the query, approximating
the impact of removing the same-class negatives without requiring access to privileged label data. This
observation is also consistent with recent work which has attempted to “debias” contrastive learning away
from same-class negatives (Chuang et al., 2020).

4 Understanding negatives by difficulty

Hard negatives are more semantically similar to the query. We have shown that easy negatives are un-
necessary and insufficient, and that, inversely, hard negatives are necessary and sufficient. However, the
properties that distinguish easy from hard negatives remain unclear. Intuitively, we might imagine that, to

3For this section, to remove a set of negatives, we replace them with slightly older negatives, so that the total number
of negatives used does not change. To accommodate this change, the queue is made slightly larger, with the additional
length remaining unused except to replace negatives we want to remove.
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Figure 4: Semantic similarity is higher for the 5% of hard negatives than for the 95% of easy negatives Proportion
of shared labels (higher is more similar) (a) and WordNet distance from root to least common ancestor (lower is more
similar) (b) for the 5% of hard negatives and the 95% of easy negatives. Error bars are standard deviation on plot values
across 3 seeds.

learn a representation that is useful for a fine-grained classification task such as ImageNet, a network must
learn to distinguish between categories that are similar but semantically distinct, e.g., different breeds of dogs.
If this were the case, we would expect that the 5% hardest negatives, which were both necessary and sufficient
for training, would also be more semantically similar to the query than the 95% easiest negatives.

To test this hypothesis, we first examined the fraction of the easy and hard negatives that had the same class
as the query label.4 Similar to our results above regarding the 0.1% very hardest negatives, we found that
negatives of the same class were significantly overrepresented among the 5% hardest negatives relative to the
easy negatives (p=5.1e-7, unpaired t-test; Figure 4a).

However, this experiment can only tell us whether the hard negatives contain more negatives that are seman-
tically identical to the query (in that they have the same class); it cannot distinguish between negatives of
different semantic similarity (which have classes that are related, but distinct from the query). To evaluate
semantic similarity we used the ImageNet class hierarchy derived from WordNet (Deng et al., 2009). For
each negative, we computed the tree depth of the least common ancestor between the negative and the query;
higher WordNet similarity means that the least common ancestor is deeper in the tree and that the negative
is therefore more similar to the query. As shown in Figure 4b, we found that the hard negatives were signif-
icantly more semantically similar to the query than the easy negatives (p=4.8e-7, unpaired t-test). Together,
these results demonstrate that semantic similarity is a property that distinguishes easy and hard negatives;
however, evaluation of whether this relationship is causal is left for future work.

Some of the easiest negatives are both anti-correlated and semantically similar to the query. Surpris-
ingly, we also found that a small subset of the very easiest examples are anti-correlated with the query (i.e.,
the dot product between these negatives and the query is highly negative; Figure 5c). While the presence
of negatives orthogonal to the query might be expected (as the two might be unrelated to one another) the
presence of a high magnitude negative dot product suggests that the network learned to anti-correlate these
negatives with the query.

Moreover, these negatives are also substantially more semantically similar to the query than the majority of
easy negatives (Figure 5b); in fact, by the WordNet tree similarity, their semantic similarity nearly matches
those of the hard negatives. In addition, qualitatively, the positive and negative classes with the highest mean
pairwise negative dot product are consistently of closely related classes such as similar breeds of dog (see
Table A3). In contrast to the hard negatives, however, these easiest negatives do not contain many negatives
of the same class as the query, although there is a slight increase for the very easiest negatives (see inset,
Figure 5a).

Some negatives are consistently easy or hard across queries. The hard negatives drive the majority of
learning in CID. However, the negatives are ranked independently for each query, so a hard negative for one
query may be easy for another. Alternatively, are there negatives that are consistently hard or easy across
queries? To test this, we started by measuring the percentage of queries for which each negative was hard,
i.e. in the hardest 5%. In Figure 6, we plot the pdf of the frequency with which each negative is hard; the
median is 5% by definition. As a baseline for comparison, we randomized the negatives for each query to

4For this section, we randomly select 2000 images as queries and 2000 as negatives, and use the trained non-
momentum encoder at 200 epochs on both.
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Figure 5: Semantic similarity increases with easier negatives, for easy negatives, which have dot product less
than zero with query Proportion of shared labels (higher is more similar) (a) and WordNet similarity from root to least
common ancestor (lower is more similar) (b) decrease with easier negatives, for the easy half of negatives. Average
negative distance is negative for the easy half of negatives (c). Error bars are standard deviation on plot values across 3
seeds (for b and c, error bars are so small they are not visible).

approximate the distribution we would expect by chance (orange in Figure 6). The real data distribution (blue)
is broader than that expected by chance, so that are indeed negatives that are more consistently hard and easy
than we would expect by random chance. We hypothesize that maintaining consistently hard negatives in the
queue and removing consistently easy ones could improve learning.

5 Related work
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Figure 6: There exist negatives that are con-
sistently harder or easier than expected by
chance. Distribution of negatives based on the
proportion of positives for which a negative is in
the hardest 5% for the real data (blue) compared
to the distribution obtained by shuffling the neg-
atives for each query (orange).

Contrastive instance discrimination. Recently, CID has been
utilized in a number of works including NPID (Wu et al., 2018),
CMC (Tian et al., 2019), Moco (He et al., 2019), SimCLR
(Chen et al., 2020a), MoCo v2 (Chen et al., 2020c), in chrono-
logical order. Inspired by its impressive performance, recent
works have tried to understand CID from a variety of perspec-
tives. In particular, Tian et al. (2020) investigate the degree
of shared information between two augmentations and how it
connects to downstream performance, Wang & Isola (2020)
suggest that contrastive objectives implicitly try to align sim-
ilar instances while uniformly utilizing the embedding space,
and Arora et al. (2019) propose a theoretical framework for
understanding contrastive learning. Recent work attempted to
mitigate the effects of same-class negatives via a reweighting
scheme (Chuang et al., 2020), but does not study negatives by
difficulty, which is our focus here.

Non-instance-discrimination self-supervised learning
methods. Beyond CID, a number of other approaches for
self-supervised have been proposed that do not work within
the CID paradigm, including RotNet (Gidaris et al., 2018),
Jigsaw (Noroozi & Favaro, 2016), DeepCluster (Caron et al., 2018), SwAV (Caron et al., 2020), SeLa (Asano
et al., 2020), PCL (Li et al., 2020), and BYOL (Grill et al., 2020). Since these do not employ negatives in the
same way as CID, our results do not directly relate to these methods.

Hard negative mining. It is a recurring theme in the machine learning literature to focus training on the most
difficult examples. In active learning, for example, it is common to favor examples on which the model is
most uncertain (Fu et al., 2013). Work in object detection has also benefited from efforts to find hard examples
(Sung, 1996; Canévet & Fleuret, 2015; Shrivastava et al., 2016). However, none of the aforementioned work
explicitly involves negative examples as in CID.

Closest to CID is work on metric learning, where the goal is to learn a representation for each example that
is conducive to clustering (Kaya & Bilge, 2019). A standard approach is to use a triplet loss, where the
loss encourages representing a query (often called an anchor) example in a fashion that is close to positive
examples from the same class and far from negative examples from other classes (Weinberger & Saul, 2009).
In this paradigm, selecting the hardest (Bucher et al., 2016) or harder (Schroff et al., 2015) negatives has
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improved both the rate of learning and final performance. Similar to our findings about MoCo, Wu et al.
(2017) find that mining the very hardest negatives hurts performance (purportedly because it increases the
variance of the gradients) and suggest mining harder (but not the hardest) negatives instead.

Example importance in classification. In contrast to our work and the aforementioned work on hard neg-
ative mining in metric learning, nearly all examples are necessary in image classification. No paper that we
are aware of could eliminate more than 20% of examples from CIFAR-10 (Toneva et al., 2018) or 10% from
ImageNet (Vodrahalli et al., 2018; Birodkar et al., 2019) without decreases in accuracy. However, not all ex-
amples are learned at the same time: the networks learn “easy” examples first (Arpit et al., 2017; Mangalam
& Prabhu, 2019) and “hard” examples later in training. However, our notions of easy, hard, and necessary
are different than this work: we determine these qualities on a per-query basis (meaning different examples
can be easy or hard for different queries) while this work assigns these qualities to specific examples for all
of training or across training runs.

6 Discussion

Contrastive instance discrimination relies critically on a pool of negatives to learn representations. We studied
how effective various subsets of the negatives are in accomplishing this task. As illustrated in Figure 1, we
found that the utility of negatives varies dramatically by difficulty: the vast majority (easiest ∼ 95%) of
negatives are insufficient without the remaining 5% and are unnecessary when those 5% are included (Section
3). Moreover, we found that the hardest negatives were actually harmful to performance and that this could
be accounted for by an over-representation of same-class negatives. To understand why hard negatives are so
helpful, we showed that the hard negatives are more semantically similar to the query than the easy negatives
(Section 4). We also found that there exist easy negatives that are both anti-correlated and semantically
similar to the query, and that some of the negatives are consistently easy or hard across queries. Many
of these observations are in line with what has been found in other contexts on hard negative mining for
metric learning, where accuracy and sample complexity have improved through judicious negative selection
methods. We believe that the insights from our work may motivate approaches that yield similar benefit in
CID.

6.1 Limitations and Future Work

While we focused our experiments on MoCo v2, we believe similar results may be observed for other CID
frameworks. However, we leave this to future work along with a study of other downstream tasks. It is also
possible that the lessons learned here may be useful for non-CID based approaches such as SwAV (Caron
et al., 2020) and PCL (Li et al., 2020).

One of our most surprising findings was that there exist negatives that are anti-correlated with the query and
also more semantically similar to it than average. This seems undesirable from the perspective of a linear
readout. Why would the network learn to anti-align two closely related concepts? Understanding the role of
such negatives and discovering whether this behavior can be exploited or corrected is an important direction
for future work.

Another avenue for future investigation is to explore the use of curricula for negative difficulty. For example,
a larger quantity of easy negatives may be useful during the early stages of training while harder negatives are
more useful later. While developing a negative curriculum is beyond the scope of this work, curricula have
shown utility in many other contexts (Bengio et al., 2009).
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Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent: A new approach to self-
supervised learning, 2020.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle for unnor-
malized statistical models. volume 9 of Proceedings of Machine Learning Research, pp. 297–304, Chia
Laguna Resort, Sardinia, Italy, 13–15 May 2010. JMLR Workshop and Conference Proceedings. URL
http://proceedings.mlr.press/v9/gutmann10a.html.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning, 2019.
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A Appendix

A.1 Additional necessity/sufficiency results

Train on only 85-90% 90-95% 95-100%
Top 1 accuracy (%) 19.47 ± 12.83 51.89 ± 1.00 66.69 ± 0.16
Top 5 accuracy (%) 36.78 ± 17.93 75.44 ± 0.74 87.35 ± 0.09

Train on only 85-100% 90-100% 95-100%
Top 1 accuracy (%) 67.22 ± 0.21 67.15 ± 0.10 67.32 ± 0.88
Top 5 accuracy (%) 87.67 ± 0.09 87.60 ± 0.02 87.52 ± 0.63

Table A1: Extended sufficiency results, 3 seeds each.

Train on all except 85-90% 90-95% 95-100%
Top 1 accuracy (%) 67.56 ± 0.12 67.53 ± 0.20 62.1 ± 0.24
Top 5 accuracy (%) 87.98 ± 0.12 87.94 ± 0.12 84.0 ± 0.15

Train on all except 85-100% 90-100% 95-100 %
Top 1 accuracy (%) 47.91 ± 0.79 56.96 ± 0.36 61.95 ± 0.16
Top 5 accuracy (%) 72.13 ± 0.83 80.14 ± 0.20 83.87 ± 0.28

Table A2: Extended necessity results, 3 seeds each.
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A.2 Most correlated and most anti-correlated classes

Mean dot product Negative Class Positive Class
-0.591357 Ibizan hound, Ibizan Podenco keeshond
-0.572822 Italian greyhound Kerry blue terrier
-0.562565 macaw ruddy turnstone
-0.494559 Staffordshire bullterrier affenpinscher
-0.487417 box turtle, box tortoise nematode
-0.476078 briard refrigerator
-0.471706 Border collie Mexican hairless
-0.467100 dalmatian chow, chow chow
-0.460264 sports car steam locomotive
-0.459015 Staffordshire bullterrier Tibetan terrier

Table A3: Most anti-correlated classes. Mean dot product was computed pairwise across each pair of
classes.

Mean dot product Negative Class Positive Class
0.923779 monarch daisy
0.901869 ground beetle dung beetle
0.856066 rifle rubber eraser
0.823796 entertainment center home theater
0.798866 minibus police van
0.795254 bee monarch,
0.794521 maillot swimming trunks
0.789350 airliner wing
0.789099 altar organ, pipe organ
0.786902 dogsled ski

Table A4: Most correlated classes. Mean dot product was computed pairwise across each pair of classes.

Mean dot product Negative Class Positive Class
-1.112930e-07 hog totem pole
-2.239249e-07 canoe tennis ball
6.617499e-07 Great Pyrenees knot
6.956980e-07 magpie Cardigan
-7.122289e-07 china cabinet running shoe
-7.863385e-07 spiny lobster balance beam
8.588731e-07 screwdriver sunglasses
-8.760835e-07 limpkin packet
8.906354e-07 impala coho
-9.792857e-07 boathouse television

Table A5: Most orthogonal classes. Mean dot product was computed pairwise across each pair of classes.
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