
The Generalization-Stability Tradeoff in Neural Network Pruning

Brian R. Bartoldson 1 Ari S. Morcos 2 Adrian Barbu 1 Gordon Erlebacher 1

Abstract

Pruning neural network parameters to reduce
model size is an area of much interest, but the orig-
inal motivation for pruning was the prevention of
overfitting rather than the improvement of compu-
tational efficiency. This motivation is particularly
relevant given the perhaps surprising observation
that a wide variety of pruning approaches confer
increases in test accuracy, even when parameter
counts are drastically reduced. To better under-
stand this phenomenon, we analyze the behavior
of pruning over the course of training, finding
that pruning’s effect on generalization relies more
on the instability generated by pruning than the
final size of the pruned model. We demonstrate
that even pruning of seemingly unimportant pa-
rameters can lead to such instability, allowing our
finding to account for the generalization benefits
of modern pruning techniques. Our results ulti-
mately suggest that, counter-intuitively, pruning
regularizes through instability and mechanisms
unrelated to parameter counts.

1. Introduction
Pruning weights and/or convolutional filters from deep neu-
ral networks (DNNs) can substantially shrink parameter
counts with minimal loss in accuracy (LeCun et al., 1990;
Hassibi & Stork, 1993; Han et al., 2015a; Li et al., 2016;
Molchanov et al., 2017; Louizos et al., 2017; Liu et al., 2017;
Ye et al., 2018), enabling broader application of DNNs via
reductions in memory-footprint and inference-FLOPs re-
quirements. Moreover, many pruning methods have been
found to actually increase accuracy, even when parameter
counts are reduced by a factor of 10 or more. Consistent
with this, pruning was originally motivated as a means to
prevent highly-parameterized networks from overfitting to
finite datasets (LeCun et al., 1990).

1Florida State University 2Facebook AI Research. Correspon-
dence to: Brian R. Bartoldson <bbartoldson@fsu.edu>.

ICML 2019 Workshop on Understanding and Improving General-
ization in Deep Learning, Long Beach, California, 2019. Copy-
right 2019 by the author(s).

However, the fear of potential overfitting has recently been
replaced by surprise that modern DNNs (with parameter
counts on the order of 107 and larger) generalize well de-
spite their capacity to overfit (Neyshabur et al., 2014; Zhang
et al., 2016). This finding has led to a flurry of studies at-
tempting to explain DNN robustness from various perspec-
tives, including empirical investigations (Neyshabur et al.,
2014; Keskar et al., 2016; Morcos et al., 2018; Nagarajan
& Kolter, 2019), as well as the derivation of generaliza-
tion bounds that imply no additional (or perhaps even less)
overfitting occurs as parameter counts increase (Neyshabur
et al., 2017; Dziugaite & Roy, 2017; Neyshabur et al., 2018).
These results raise a puzzling question: if large parameter
counts don’t result in overfitting, how can pruning increase
performance?

To answer this question, we analyzed variants of magnitude
pruning (Han et al., 2015b) over the course of training,
finding that pruning large-magnitude weights rather than
small-magnitude weights, an approach rarely taken in the
literature, can actually lead to better generalization. We
then demonstrate that this generalization benefit appears to
be due to the instability generated by pruning rather than a
property of large weights. Indeed, we found that pruning
small weights can be tailored to generate as much instability
as pruning large weights (especially in batch-normalized
networks) and to confer the commensurate generalization
benefit. This finding motivated our derivation of an approach
to magnitude pruning of batch-normalized-parameters that
accounts for the normalization process’s ability to obscure
parameter importance. The totality of our results suggests
that parameter-count-dependent generalization bounds are
unlikely to explain pruning’s ability to improve test accuracy,
while other approaches to understanding generalization such
as minimum description length appear capable of explaining
the effects of pruning.

2. Approach
Many factors affect how stable a neural network’s output is
in response to pruning. We restrict our experiments to the
exploration of the following subset: pruning target, pruning
schedule, pruning percentage, and model. In this section,
we provide an overview of these factors and demonstrate a
need for a novel pruning target, which we derive.



The Generalization-Stability Tradeoff in Neural Network Pruning

50 100 150 200 250
Epoch

2 6

2 4

2 2

20

22

24

M
ea

n 
Pr

un
in

g-
Ge

ne
ra

te
d

Dr
op

 in
 T

op
-1

 A
cc

ur
ac

y 
% Pruning Style (Converged Top-1 %)

Prune_S, Iteratively Prune 1%+1% (85.49)
Prune_S E[BN], Iteratively Prune 1%+1% (85.43)
Prune_S E[BN], Iteratively Prune 8%+13% (85.74)
Prune_L E[BN], Iteratively Prune 8%+13% (86.39)

2 6 2 4 2 2 20

Mean Pruning-Generated
Drop in Top-1 Accuracy %

85.00

85.25

85.50

85.75

86.00

86.25

86.50

Co
nv

er
ge

d 
To

p-
1 

Ac
cu

ra
cy

 %

pearsonr = 0.84; p = 1.6e-11

Figure 1. The instability levels generated by different approaches to pruning (10 runs per configuration). Pruning methods that generate
more instability have higher top-1 accuracies. (Left) Means reduce along the run dimension and are computed from only positive drop
values to aid visualization. (Right) Means reduce along the run and epoch dimensions and contain all drop values. Pruning targeted the
final four convolutional layers of VGG11 during training on CIFAR-10 data with (layerwise) starting epochs s = (3, 4, 5, 6), ending
epochs e = (150, 150, 150, 275), and pruning fractions p = (0.3, 0.3, 0.3, 0.9). All models had 42% of their 9,231,114 parameters
removed. Since the pruning disproportionately targeted the final layer, pruning required two separate iterative pruning percentages,
denoted in the legend. To allow for the same amount of pruning among models with differing iterative pruning percentages, we adjusted the
number of inter-pruning retraining epochs. The models were trained with Adam until convergence at 325 epochs with lrs = (150, 300).

2.1. Pruning Target

In all of our experiments, we use magnitude pruning (Han
et al., 2015b). We denote pruning algorithms that target
small-magnitude parameters with an ”S” subscript (e.g.
pruneS), random parameters with an ”R” subscript, and
large-magnitude parameters with an ”L” subscript. The
usual approach to pruning involves removing parameters
that have a small magnitude (Li et al., 2016; Gale et al.,
2019), or a small effect on the loss function (LeCun et al.,
1990; Hassibi & Stork, 1993; Molchanov et al., 2016; 2017;
Louizos et al., 2017; Ye et al., 2018; Yu et al., 2018). Despite
the fact that small-magnitude weights are not necessarily the
least important to the loss function (LeCun et al., 1990; Has-
sibi & Stork, 1993), our experiments and (Gale et al., 2019)
suggest that magnitude can be an effective alternative to
more sophisticated judgments of a parameter’s importance
to the model.

2.1.1. IDENTIFYING IMPORTANT BATCH-NORMALIZED
PARAMETERS

The relationship between parameter magnitude and impor-
tance is particularly confusing in the context of batch nor-
malization (BN) (Ioffe & Szegedy, 2015). Without batch
normalization, a convolutional filter with weights W will
produce feature map activations with half the magnitude
of a filter with weights 2W : filter magnitude clearly scales
the output. With batch-normalization, however, the feature
maps are normalized to have zero mean and unit variance,

and their ultimate magnitudes depend on the BN affine-
transformation parameters γ and β. As a result, in batch-
normalized networks, filter magnitude does not scale the
output. This suggests that equating small magnitude with
unimportance may be flawed for batch-normalized param-
eters, and has motivated approaches to use the scale pa-
rameter γ’s magnitude to find the convolutional filters that
are important to the network’s output (Ye et al., 2018). In
A.1, we derive a novel approach to determining filter impor-
tance/magnitude that incorporates both γ and β. We denote
this approach ”E[BN] pruning”.

2.2. Pruning Schedule and Percentage

We denote the pruning of n layers by specifying a series of
epochs at which pruning starts s = (s1, ..., sn), a series of
epochs at which pruning ends e = (e1, ..., en), a series of
fractions of parameters to remove p = (p1, ..., pn), and a
retrain period r ∈ N . For a given layer l, the retrain period
r and fraction pl jointly determine the iterative pruning
percentage il. Our experiments prune the same number of
parameters il×size(layerl) per pruning iteration, ultimately
removing pl×100% of the parameters by the end of epoch el.
Our approach is designed to study the effects of changing
factors such as the iterative pruning rate and lacks some
practically helpful features, e.g. hyperparameters indicating
how many parameters can be safely pruned (Liu et al., 2017;
Molchanov et al., 2017).



The Generalization-Stability Tradeoff in Neural Network Pruning

50 100 150 200 250 300
Epoch

83.0 83.0

83.5 83.5

84.0 84.0

84.5 84.5

85.0 85.0

85.5 85.5

86.0 86.0

86.5 86.5

To
p-

1 
Ac

cu
ra

cy
 %

21%

Pruning Style (Converged Top-1 %)
No Pruning (85.22)
Prune_S E[BN], Iteratively Prune 1%+1% (85.43)
Prune_S E[BN], Iteratively Prune 8%+13% (85.74)
Prune_L E[BN], Iteratively Prune 8%+13% (86.39)

Figure 2. The top-1 test accuracy during training of VGG11 on CIFAR10 data. The first approach is an unpruned baseline. The other
approaches use E[BN] pruning, but differ in their targets’ magnitudes (small vs. large), and their iterative pruning percentages. Pruning
was performed as described in Figure 1. The 95% confidence intervals are bootstrapped from 10 runs per configuration.

2.3. Summary of Models

The models considered are: a network with convolutions
(2x32, pool, 2x64, pool) and fully connected layers (512, 10)
that we denote Conv4, and VGG11 with its fully-connected
layers replaced by a single fully-connected layer. All con-
volutions are 3x3. Our experiments applied these models
to the CIFAR-10 dataset (Krizhevsky & Hinton, 2009) and
employed data augmentation only where noted. Additional
details on the training and pruning of these models are pro-
vided in A.2.

3. Experiments
3.1. Generalization from Instability

Modern generalization bounds make it difficult to simply
attribute pruning-generated accuracy improvements to a
reduction in parameter count. We therefore consider an-
other original motivation of pruning: minimizing descrip-
tion length (MDL) (Rissanen, 1978; LeCun et al., 1990;
Hassibi & Stork, 1993; Hochreiter & Schmidhuber, 1997).
Pruning is capable of disrupting the network’s computations
by effectively adding noise to the internal representations of
the input, which, when deployed throughout training, may
encourage learned parameters to be less sensitive to noise
and therefore able to be described more succinctly (Hochre-
iter & Schmidhuber, 1997; Srivastava et al., 2014; Poole
et al., 2014). Alternatively, if the pruning process preserves
the outputs of a network, then it likely failed to alter the rep-
resentations of its inputs in a material way (or the network
is already robust to pruning-induced noise), and the pruned
model should not be expected to have a significantly differ-
ent description length than the original model. The MDL

principle therefore suggests that more disruptive approaches
are more capable of improving a model’s generalization
than those which leave a model effectively unchanged.

To determine whether more disruptive pruning approaches
generalize better, we compared the pruning-generated insta-
bility and final top-1 test accuracy of four unique pruning
algorithms (Figure 1). We assessed the level of instability
produced by the pruning procedures via the difference in
test accuracy immediately before and after pruning.

Surprisingly, we observed that pruning algorithms that desta-
bilized the network more over the course of training resulted
in higher final test accuracies than those which were stable
(Figure 1; correlation = .84, p-value = 1.6e−11). These
results suggest that pruning techniques may facilitate better
generalization when they induce more instability, consistent
with the MDL principle. Furthermore, this result lends sup-
port to the idea that generalization benefits from pruning
are due to the noise pruning adds rather than the parameter
count reduction.

Figure 2 illustrates the test-accuracy dynamics of an un-
pruned baseline network and this same network under three
of the pruning regimes from Figure 1. Pruning events for
pruneL with a high iterative pruning rate (red curve, pruning
either 13% of the final convolutional layer or 8% of one of
the other 3 convolutional layers targeted per pruning itera-
tion) are substantially more destabilizing than other prun-
ing events, yet surprisingly, despite the dramatic pruning-
induced drops in performance, the network recovers to
higher performance within a few epochs. Several of these
pruning events are highlighted with red arrows.



The Generalization-Stability Tradeoff in Neural Network Pruning

0.0 0.1 0.2 0.3
Iterative Pruning Percentage

0

5

10

M
ea

n 
Pr

un
in

g-
Ge

ne
ra

te
d

Dr
op

 in
 T

op
-1

 A
cc

ur
ac

y 
% Target Filter L2 Norm

Pruning Style
Prune_S
Prune_R
Prune_L

0.0 0.1 0.2 0.3
Iterative Pruning Percentage

0

2

4

6

M
ea

n 
Pr

un
in

g-
Ge

ne
ra

te
d

Dr
op

 in
 T

op
-1

 A
cc

ur
ac

y 
% Target E[BN]

0.0 0.1 0.2 0.3
Iterative Pruning Percentage

85.25

85.50

85.75

86.00

86.25

86.50

86.75

To
p-

1 
Ac

cu
ra

cy
 %

Target Filter L2 Norm
Pruning Style

Prune_S
Prune_R
Prune_L

0.0 0.1 0.2 0.3
Iterative Pruning Percentage

Target E[BN]

Figure 3. Here we seek to understand the effects of progressively larger pruning events. We pruned the final four convolutional layers
of VGG11 during training on CIFAR-10 data with (layerwise) starting epochs s = (3, 3, 3, 3), ending epochs e = (50, 50, 50, 120),
maximum prune fractions p = (.3, .3, .3, .9), and inter-pruning retrain epochs r = 40. This experiment was unique in that we did not
necessarily reach the total pruning percentages in p, rather we pruned every r = 40 epochs the same constant iterative pruning percentage
i = (x/2, x/2, x/2, x) for the x given in the figure’s x-axis. The models were trained with Adam until convergence at 175 epochs with
lrs = (50, 120).

3.2. Iterative Pruning Percentage

Is magnitude the only factor impacting pruning-induced in-
stability? Another possibility is that removing more weights
at each pruning event (while keeping the final fraction of
pruned weights constant) may also increase instability, con-
sistent with observations that post-hoc iterative pruning is
often more effective (Han et al., 2015b). If this is the case,
we would expect that increasing the iterative pruning rate
should also increase instability and generalization perfor-
mance. Alternatively, if the final pruning fraction is all that
matters, we would expect that changing the iterative pruning
rate while keeping the final pruning fraction fixed should
have no effect.

To test this, we plotted the average drop in accuracy immedi-
ately following a pruning event as well as the test accuracy
as a function of different iterative pruning rates (Figure 3).
Consistently, we observed that increasing the iterative prun-
ing rate increased both the instability induced by pruning
(Figure 3 left) and the overall test accuracy (Figure 3 right).
Figure 3 holds r constant while allowing the final pruning
percentage to vary, while Figure A2 holds the final pruning
percentage constant and allows r to vary: the same rela-
tionships between instability, generalization, and iterative
pruning percentage appear in each figure. These result sug-
gests that using higher iterative pruning rates during training
is an effective method to induce additional instability and
generalization.

Interestingly, we found that while using standard magnitude
pruning, there was little difference in test accuracy between
pruning small, large, or random weights, and pruning small
weights actually induced more instability than pruning large
weights. In contrast, for E[BN] magnitude pruning, pruning
large weights consistently resulted in greater instability and
test performance. These results suggest that the precise
pruning algorithm used can have a dramatic impact on the

factors which introduce instability and induce better test
performance.

In Figure 1, at a low iterative pruning percentage, E[BN]
pruning led to a small but statistically significant 0.02 per-
centage point lower average disruption to test accuracy than
filter-`2-norm pruning (p-value 10e-10), and we find further
support for this pattern in Figure 3. Although, we can-
not entirely attribute this result to E[BN] pruning because
our filter-`2-norm pruning approach did not set the batch-
normalization bias of pruned filters to zero, which creates
additional instability when pruning (Morcos et al., 2018).

4. Conclusion
We applied several pruning approaches to multiple neural
networks, assessing the approaches’ effects on instability
and generalization. Throughout, we observed that pruning
algorithms that generated more instability led to better test
accuracies. For instance, we found that utilizing high itera-
tive pruning rates, rather than total parameters pruned, was
particularly important to the creation of instability and gen-
eralization (see Figure 1, Section 3.1). This lends support to
hypotheses stating that pruning regularizes through mecha-
nisms unrelated to parameter counts, and supports the idea
that the instability produced by pruning can induce networks
to become robust to noisy internal representations, which
leads to better generalization in the minimum description
length framework.

In Appendix A.4, we demonstrate that the regularization
benefit of pruning can be outweighed by the destruction
of effective capacity. This problem was most noticeable
when the model capacity was small relative to the number
of examples per class. As such, an important caveat is that
many of our results were generated with VGG11 and CIFAR-
10, so future work will be required to evaluate whether the
presented phenomena hold in large datasets and models.



The Generalization-Stability Tradeoff in Neural Network Pruning

References
Dziugaite, G. K. and Roy, D. M. Computing nonvacuous

generalization bounds for deep (stochastic) neural net-
works with many more parameters than training data.
arXiv preprint arXiv:1703.11008, 2017.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity
in deep neural networks. CoRR, abs/1902.09574, 2019.
URL http://arxiv.org/abs/1902.09574.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015a.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network. In
Advances in neural information processing systems, pp.
1135–1143, 2015b.

Hassibi, B. and Stork, D. G. Second order derivatives for
network pruning: Optimal brain surgeon. In Advances
in neural information processing systems, pp. 164–171,
1993.

Hochreiter, S. and Schmidhuber, J. Flat minima. Neural
Computation, 9(1):1–42, 1997.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy,
M., and Tang, P. T. P. On large-batch training for deep
learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Krizhevsky, A. and Hinton, G. Learning multiple layers
of features from tiny images. Technical report, Citeseer,
2009.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain
damage. In Advances in neural information processing
systems, pp. 598–605, 1990.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf,
H. P. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710, 2016.

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang,
C. Learning efficient convolutional networks through
network slimming. In Computer Vision (ICCV), 2017
IEEE International Conference on, pp. 2755–2763. IEEE,
2017.

Louizos, C., Ullrich, K., and Welling, M. Bayesian compres-
sion for deep learning. In Advances in Neural Information
Processing Systems, pp. 3290–3300, 2017.

Molchanov, D., Ashukha, A., and Vetrov, D. Variational
dropout sparsifies deep neural networks. arXiv preprint
arXiv:1701.05369, 2017.

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J.
Pruning convolutional neural networks for resource effi-
cient transfer learning. arXiv preprint arXiv:1611.06440,
2016.

Morcos, A., Barrett, D. G., Rabinowitz, N. C., and
Botvinick, M. On the importance of single directions
for generalization. In Proceeding of the International
Conference on Learning Representations, 2018.

Nagarajan, V. and Kolter, J. Z. Generalization in deep
networks: The role of distance from initialization. arXiv
preprint arXiv:1901.01672, 2019.

Narang, S., Diamos, G., Sengupta, S., and Elsen, E. Explor-
ing sparsity in recurrent neural networks. arXiv preprint
arXiv:1704.05119, 2017.

Neyshabur, B., Tomioka, R., and Srebro, N. In search of the
real inductive bias: On the role of implicit regularization
in deep learning. arXiv preprint arXiv:1412.6614, 2014.

Neyshabur, B., Bhojanapalli, S., McAllester, D., and Sre-
bro, N. Exploring generalization in deep learning. In
Advances in Neural Information Processing Systems, pp.
5949–5958, 2017.

Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y., and
Srebro, N. Towards understanding the role of over-
parametrization in generalization of neural networks.
arXiv preprint arXiv:1805.12076, 2018.

Poole, B., Sohl-Dickstein, J., and Ganguli, S. Analyzing
noise in autoencoders and deep networks. arXiv preprint
arXiv:1406.1831, 2014.

Rissanen, J. Modeling by shortest data description. Auto-
matica, 14(5):465–471, 1978.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Ye, J., Lu, X., Lin, Z., and Wang, J. Z. Rethinking
the smaller-norm-less-informative assumption in chan-
nel pruning of convolution layers. arXiv preprint
arXiv:1802.00124, 2018.

http://arxiv.org/abs/1902.09574


The Generalization-Stability Tradeoff in Neural Network Pruning

Yu, R., Li, A., Chen, C.-F., Lai, J.-H., Morariu, V. I., Han,
X., Gao, M., Lin, C.-Y., and Davis, L. S. Nisp: Pruning
networks using neuron importance score propagation. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 9194–9203, 2018.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking general-
ization. arXiv preprint arXiv:1611.03530, 2016.

Zhu, M. and Gupta, S. To prune, or not to prune: exploring
the efficacy of pruning for model compression. arXiv
preprint arXiv:1710.01878, 2017.



The Generalization-Stability Tradeoff in Neural Network Pruning

A. Appendix
A.1. Expected Value of Batch Normalized Parameters

To approximate the expected value/magnitude of a batch-
normalized, post-ReLU feature map activation, we start by
defining the feature map produced by convolution with BN:

M = γBN(W ∗ x) + β

We approximate the activations within this feature map as
Mij ∼ N (β, γ). This approximation is justified if central
limit theorem assumptions are met by the dot products in
W ∗ x, and we empirically show in Figure A.1 that this
approximation is highly accurate early in training, though
it becomes less accurate as training progresses. Given this
approximation, the post-ReLU feature map

R = max{0,M}

has elements Rij that are either 0 or samples from a trun-
cated normal distribution with left truncation point l = 0,
right truncation point r =∞, and mean µ where

µ = γ
φ(λ)− φ(ρ)

Z
+ β

λ =
l − β
γ

, ρ =
r − β
γ

, Z = Φ(ρ)− Φ(λ),

and φ(x) and Φ(x) are the standard normal distribution’s
PDF and CDF (respectively) evaluated at x. Thus, an ap-
proximation to the expected value of Rij is given by

E[Rij ] ≈ Φ(λ)0 + (1− Φ(λ))µ

We use ”E[BN] pruning” to refer to magnitude pruning with
the approximation to E[Rij ] as a target. This target has two
advantages. First, this approach avoids the problematic as-
sumption that filter importance is tied to filter magnitude in
a batch-normalized network. Accordingly, we hypothesize
that E[BN] pruning can grant better control of the stability of
the neural network’s output than targeting small-magnitude
filters. Second, the complexity of the calculation is negli-
gible as it requires (per filter) just a handful of arithmetic
operations on scalars, and two PDF and CDF evaluations,
which makes it cheaper than a data-driven approach (e.g.
approximating the expected value via the sample mean of
feature map activations for a batch of feature maps).

The main drawback to the E[BN] approach is the some-
times poor approximation Mij ∼ N(β, γ). For a VGG19
model, we found that the extent to which the approxima-
tion holds depends on the layer and training epoch. A less
serious drawback is that this approach does not account
for the strength of connections to the post-BN feature map,
which could have a large expected value but low importance
if relatively small-magnitude weights connected it to the
following layer.

5.0 2.5 0.0 2.5 5.0
Activation Magnitude

0.0

0.2

0.4

0.6

0.8

PD
F

5.0 2.5 0.0 2.5 5.0
Activation Magnitude

0.0

0.2

0.4

0.6

0.8

PD
F

5.0 2.5 0.0 2.5 5.0
Activation Magnitude

0.0

0.2

0.4

0.6

0.8

PD
F

5.0 2.5 0.0 2.5 5.0
Activation Magnitude

0.0

0.2

0.4

0.6

0.8

PD
F

5.0 2.5 0.0 2.5 5.0
Activation Magnitude

0.0

0.2

0.4

0.6

0.8

PD
F

5.0 2.5 0.0 2.5 5.0
Activation Magnitude

0.0

0.2

0.4

0.6

0.8

PD
F

5.0 2.5 0.0 2.5 5.0
Activation Magnitude

0.0

0.2

0.4

0.6

0.8

PD
F

5.0 2.5 0.0 2.5 5.0
Activation Magnitude

0.0

0.2

0.4

0.6

0.8

PD
F

5.0 2.5 0.0 2.5 5.0
Activation Magnitude

0.0

0.2

0.4

0.6

0.8

PD
F

5.0 2.5 0.0 2.5 5.0
Activation Magnitude

0.0

0.2

0.4

0.6

0.8

PD
F

5.0 2.5 0.0 2.5 5.0
Activation Magnitude

0.0

0.2

0.4

0.6

0.8

PD
F

5.0 2.5 0.0 2.5 5.0
Activation Magnitude

0.0

0.2

0.4

0.6

0.8
PD

F

5.0 2.5 0.0 2.5 5.0
Activation Magnitude

0.0

0.2

0.4

0.6

0.8

PD
F

5.0 2.5 0.0 2.5 5.0
Activation Magnitude

0.0

0.2

0.4

0.6

0.8

PD
F

5.0 2.5 0.0 2.5 5.0
Activation Magnitude

0.0

0.2

0.4

0.6

0.8

PD
F

5.0 2.5 0.0 2.5 5.0
Activation Magnitude

0.0

0.2

0.4

0.6

0.8

PD
F

VG
G1

9 
La

ye
r D

ep
th

Untrained VGG19 Trained VGG19

Figure A1. We examined the normalized activations (shown in blue
histograms) of feature maps in the final eight convolutional layers
of VGG19 before (left) and after (right) training to convergence.
We found that the approximation to standard normality (shown in
orange) of these activations is reasonable early on but degrades
with training (particularly in layers near the output).



The Generalization-Stability Tradeoff in Neural Network Pruning

A.2. Additional Training/Pruning Details

Unstructured pruning of Conv4 is done via individual weight
magnitude. Our unstructured pruning approach does not
allow previously pruned weights to reenter the network
(Narang et al., 2017; Zhu & Gupta, 2017; Gale et al., 2019).
Structured pruning of VGG filters is done via the `2-norm of
their weights or the E[BN] calculation. When pruning VGG
models, we employ structured pruning of filters because a)
most weights and FLOPs are created by their convolutional
layers and b) speedups from pruning weights in these layers
are most easily realized with modern algorithms/hardware
by using structured pruning of entire filters (Molchanov
et al., 2016). Pruning of Conv4 is always applied to its
penultimate linear layer (which contains 94% of Conv4’s
1,250,858 parameters), while pruning of VGG11 is always
applied to its final four convolutional layers (which contain
90% of VGG11’s 9,231,114 parameters).

We trained these models using Adam (Kingma & Ba, 2014)
with initial learning rate lr = 0.001. We often found Adam
more helpful than SGD for recovering from relatively desta-
bilizing pruning events. We used batch size 128 except
where noted. For some experiments, we give multi-step
learning rate schedules lrs = (x, y), which means we shrink
the learning rate by a factor of 10 at epochs x and y.

A.3. Varying Iterative Pruning Percentage with a
Constant Final Pruning Fraction

Here, we demonstrate the same patterns found in Figure 3
while holding final pruning percentage constant. Achieving
this requires allowing r to vary: lower iterative pruning
percentages require smaller values of r to reach a given
final pruning percentage by the end of training. The com-
bination of Figures 3 and A2 suggest that, given a final
pruning percentage, iterative pruning percentage can fuel
more instability and better generalization.

Future studies similar to Figure A2 could be conducted
to explore a wider range of iterative pruning percentages.
Achieving this while holding constant the final pruning frac-
tion could be done by utilizing more total training epochs.

A.4. When More Instability Fails to Produce Better
Generalization

Pruning approaches can be tailored to create instability that
prevents network recovery (an extreme example being tar-
geting all of the parameters of a given layer), but there are
also more subtle cases in which the tradeoff presented here
is less easily leveraged or may not even apply.

One of the best approaches to improving neural network
generalization is expanding the size of the training dataset.
If a model has low capacity relative to the number of training

data instances per class, then overfitting becomes a worse
strategy for minimizing the loss on the training dataset.
Consequently, we would expect that pruning a model with
low capacity (relative to dataset size) may mask or even
overcome the regularization benefits of pruning.

Here, we seek to determine the extent to which the regu-
larization effect of pruning can be outweighed by its effect
on model capacity. In Conv4 experiments (A3), pruneS
and pruneL prune stably and unstably, respectively. Sta-
ble pruning algorithms preserve the function computed by
the network, enabling us to consider pruneS and pruneL as
approaches that do and do not (respectively) preserve the
model’s effective capacity during training. As a model’s
effective capacity decreases, its ability to fit large datasets
should also decrease. As a result, if the generalization-
stability tradeoff can be masked by an unstable pruning
approach’s impact on effective capacity, then we would ex-
pect there to be some training set size at which performance
would start to degrade. To test this, we train Conv4 on pro-
gressively larger subsets of CIFAR-10, seeking a point at
which pruneL removes enough effective capacity to cause
underfitting to the dataset and the consequent reduction in
performance (Figure A3 left, middle).

Consistent with instability conferring generalization bene-
fits as long as capacity is not affected by pruning, we see
pruneL creating an initially substantial generalization bene-
fit that declines with dataset size (Figure A3 left, middle).
This effect is particularly prominent in the context of data
augmentation (random crops and horizontal flips), which
dramatically increases the effective dataset size.

Our batch size of 128 on the full dataset corresponds to 391
parameter updates per epoch, and we adjusted batch sizes for
each data subset size such that approximately 391 updates
occurred per epoch. For instance, the 128 examples/class
experiment has a batch size of (128×10)//391 = 3, which
performs 427 updates/epoch. Since smaller batch sizes con-
fer better generalization (Keskar et al., 2016), the apparent
generalization benefit of pruneL may actually be muted; i.e.,
the baseline may already be regularized to some extent by
the noisier gradient of the smaller batch size.



The Generalization-Stability Tradeoff in Neural Network Pruning

0.1 0.2 0.3
Iterative Pruning Percentage

0

1

2

3

4

5

6

Fi
na

l P
ru

ni
ng

's 
M

ea
n

Dr
op

 in
 T

op
-1

 A
cc

ur
ac

y 
%

Target Filter L2 Norm
Pruning Style

Prune_L
Prune_S

0.1 0.2 0.3
Iterative Pruning Percentage

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fi
na

l P
ru

ni
ng

's 
M

ea
n

Dr
op

 in
 T

op
-1

 A
cc

ur
ac

y 
%

Target E[BN]

0.1 0.2 0.3
Iterative Pruning Percentage

85.8

86.0

86.2

86.4

86.6

To
p-

1 
Ac

cu
ra

cy
 %

Target Filter L2 Norm

Pruning Style
Prune_L
Prune_S

0.1 0.2 0.3
Iterative Pruning Percentage

Target E[BN]

Figure A2. We pruned the final four convolutional layers of VGG11 during training on CIFAR-10 data with (layerwise) starting epochs
s = (3, 3, 3, 3), ending epochs e = (50, 50, 50, 120), and prune fractions p = (.1, .1, .1, .9). We allow retrain period r to vary such that
the total prune fraction p will be met by the end of epoch e; specifically, the first iterative pruning percentage plotted corresponds to r = 4
and each of the following experiments add 4 to the prior experiment’s r, ending in r = 40. The layerwise iterative pruning percentages
each result from the combination of sl, el, pl, and r; they are roughly i = (x/5, x/5, x/5, x) for the x given in the figure’s x-axis. Unlike
Figures 1 and 3, the mean post-pruning drops in accuracy were calculated using the top-1 test accuracy immediately after the final pruning
event, and the top-1 test accuracy from the epoch before this pruning (the other figures made this calculation immediately before and
immediately after pruning, and they used all pruning events); regardless, the same patterns exist in the pruning-generated accuracy drops
here. The models were trained with Adam until convergence at 175 epochs with lrs = (50, 120).

128 1024 Full Set
(5000)

Augment
Data

Samples per Class

40

50

60

70

80

To
p-

1 
Ac

cu
ra

cy
 %

Pruning Style
No Pruning
Prune_S
Prune_L

128 1024 Full Set
(5000)

Augment
Data

Samples per Class

60

50

40

30

20

10

0

Ge
ne

ra
liz

at
io

n 
Ga

p 
%

Pruning Style
No Pruning
Prune_S
Prune_L

0 5 10 15 20 25
Epoch

20

40

60

80

100

To
p-

1 
Ac

cu
ra

cy
 %

Pruning Style
No Pruning
Prune_S
Prune_L
Train/Test
Train
Test

Figure A3. We trained Conv4 on CIFAR10 using 4 levels of data for 25 epochs. We found that, without data agumentation, the
regularization effect of pruning can significantly improve the baseline’s generalization (left) because the baseline’s generalization gap (the
difference between test and train accuracy) is large (middle). At all data levels, the generalization gap is better reduced by pruning the
largest-magnitude weights (pruneL) than by pruning the smallest-magnitude weights (pruneS). (Right) The training accuracies and test
accuracies (the latter were calculated immediately after pruning) illustrate how much each pruning algorithm disturbs the neural network’s
output during training on the full dataset. The pruning algorithms start on epoch s = (3), end on epoch e = (18), prune the percentage
p = (0.9), and prune every epoch via retrain period r = 1. The error bars in all three plots are 95% confidence bootstrapped from 20
distinct runs of each experiment.


