
As neural networks have become more powerful, an increasing number of studies have sought 
to decipher their internal representations (Zeiler et al., 2014, Li et al., 2015, Bau et al., 2017, Arpit 
et al., 2017, Karpathy et al., 2015, Yosinksi et al., 2015, Morcos et al., 2018a). Most of these have 
focused on the role of individual units in the computations performed by individual networks. 
Comparing population representations across networks has proven especially difficult, largely 
because networks converge to apparently distinct solutions in which it is difficult to find 
one-to-one mappings of units (Li et al., 2015).

Recently, Raghu et al. (2017) applied Canonical Correlation Analysis (CCA) as a tool to compare 
representations across networks. Because CCA is invariant to linear transforms, it is capable of 
finding shared structure across representations which are superficially dissimilar, making CCA 
an ideal tool for comparing the representations across groups of networks and for comparing 
representations across time in RNNs. 

Using CCA to investigate the representations of neural networks, we make three main 
contributions:

1. We analyse the technique introduced in Raghu et al., 2017, and identify a key challenge: 
the method does not effectively distinguish between the signal and the noise in the 
representation. We address this via a better aggregation technique.

2. Building off of Morcos et al., 2018a, we demonstrate that groups of networks which 
generalize converge to more similar solutions than those which memorize, that wider 
networks converge to more similar solutions than narrower networks , and that networks 
with identical topology but distinct learning rates converge to a small set of diverse 
solutions.

3. Using CCA to analyze RNN representations over training, we find that, as with CNNs , RNNs 
exhibit bottom-up convergence. Across sequence timesteps, however, we find that RNN 
representations vary significantly.

Figure 2: Projection weighted vs. unweighted mean. Unweighted mean (blue) and projection 
weighted mean (red) were used to compare networks with common (signal) and uncommon 
(noise) structure, each of fixed dimensionality. As the signal to noise ratio decreases, the 
unweighted mean underestimates the shared structure, while the projection weighted mean 
remains largely robust. L1, L2 - Activation matrices, ρi - CCA coefficients, h - CCA vectors, z - 
neuron activation vectors

Figure 6: RNNs exhibit bottom-up learning dynamics. To test whether layers converge to their 
final representation over the course of training with a particular structure, we compared each 
layer’s representation over the course of training to its final representation using CCA. In shallow 
RNNs trained on PTB (a), and WikiText-2 (b), we observed a clear bottom-up convergence 
pattern, in which early layers converge to their final representation before later layers. In deeper 
RNNs trained on WikiText-2, we observed a similar pattern (c). Importantly, the weighted mean 
reveals this effect much more accurately than the unweighted mean, which is also supported by 
control experiments (d), revealing the importance of appropriate weighting of CCA coefficients.

• Projection weighted CCA differentiates between signal and noise in CCA coefficients

• Generalizing networks converge to more similar solutions than memorizing networks

• Consistent with the lottery ticket hypothesis, wider networks converge to more similar• 
solutions than narrow networks

• Trained networks with identical topology but different random seeds converge to distinct 
clusters with diverse representations, but often similar performance 

• RNNs exhibit bottom-up learning dynamics

• Code available at: https://github.com/google/svcca

Figure 3: Generalizing networks converge to more 
similar solutions than memorizing networks. 
Groups of 5 networks were trained on CIFAR-10 with 
either true labels (generalizing) or random labels 
(memorizing). The pairwise CCA distance was then 
compared within each group and between 
generalizing and memorizing networks (inter) for 
each layer, based on the training data. While both 
categories converged to similar solutions in early 
layers, likely reflecting convergent edge detectors, 
etc., generalizing networks converge to significantly 
more similar solutions in later layers. At the softmax, 
sets of both generalizing and memorizing networks 
converged to nearly identical solutions, as all 
networks achieved near-zero training loss. Error 
bars represent mean ± std weighted mean CCA 
distance across pairwise comparisons.

Figure 1: CCA distinguishes between stable and unstable parts of the representation over 
the course of training. Sorted CCA coefficients (ρt

(i)) comparing representations between layer 
L at times t through training with its representation at the final timestep T for CNNs trained on 
CIFAR-10 (a), and RNNs trained on PTB (b) and WikiText-2 (c). For all of these networks, at time 
t0 < T (indicated in title), the performance converges to match final performance. However, 
many ρt

(i) are unconverged, corresponding to unnecessary parts of the representation (noise). 
To distinguish between the signal and noise portions of the representation, we apply CCA 
between L at timestep t early in training, and L at timestep T/2 to get ρT/2. We take the 100 top 
converged vectors (according to ρT/2) to form S, and the 100 least converged vectors to form B. 
We then compute CCA similarity between S and L at time t > tearly, and similarly for B. S remains 
stable through training (signal), while B rapidly becomes uncorrelated (d-f). Note that the 
sudden spike at T/2 in the unstable representation is because it is chosen to be the least 
correlated with step T/2.

Figure 4: Wider networks converge to more similar solutions. Groups of 5 networks with 
different random initializations were trained on CIFAR-10. Pairwise CCA distance was 
computed for members of each group. Groups of larger networks converged to more similar 
solutions than groups of smaller networks (a). Test accuracy was highly correlated with degree 
of convergent similarity, as measured by CCA distance (b).
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Introduction

All CCA directions are not created equal

CCA reveals clusters of converged solutions

RNNs exhibit bottom-up learning dynamics

Summary

Networks which generalize converge to more 
similar solutions than memorizing networks

Projection weighted CCA is more stable 
to noise than mean CCA

Wider networks converge to more similar
solutions than narrower networks

Figure 5: CCA reveals clusters of converged solutions across networks with different random 
initializations and learning rates. 200 networks with identical topology and varying learning 
rates were trained on CIFAR-10. CCA distance between the eighth layer of each pair of networks 
was computed, revealing five distinct subgroups of networks (a). These five subgroups align 
almost perfectly with the subgroups discovered in Morcos et al., 2018a (b; colors correspond to 
bars in a), despite the fact that the clusters in Morcos et al., 2018a were generated using 
robustness to cumulative ablation, an entirely separate metric.
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