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ABSTRACT MODEL
Whether neural networks can learn abstract reasoning or whether they merely rely on Ch"icipa”e' i
superficial statistics is a topic of recent debate. Here, we propose a dataset and gz?"’ — 1 @ _
challenge designed to probe abstract reasoning, inspired by a well-known human IQ Qfl/ ¢ g = ==Y = N
test. To succeed at this challenge, models must cope with various generalisation o ———1ine _ ?: ——>
"regimes” in which the training and test data differ in clearly-defined ways. We show that - ) =  Score-B
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popular models such as ResNets perform poorly, even when the training and test sets e o 5 >

&
differ only minimally, and we present a novel architecture, with a structure designed to @ﬁ ||' > 7 0" I > @-P sigmoid --» meta-target
encourage reasoning, that does significantly better. When we vary the way in which the &/ : | = == —p s — o
‘ ;E ]

test questions and training data differ, we find that our model is notably proficient at
certain forms of generalisation, but notably weak at others. We further show that the iy
model's ability to generalise improves markedly if it is trained to predict symbolic -
explanations for its answers. Altogether, we introduce and explore ways to both
measure and induce stronger abstract reasoning in neural networks. Our freely-
available dataset should motivate further progress in this direction.
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RAVEN'S PROGRESSIVE MATRICES GENERALISATION REGIMES

(1) Neutral In both training and test sets, the structures S can contain any
triples |r,0,a] for r € R, o € O and a € A. The training and test sets are
disjoint, but this separation was at the level of the input variables (i.e., the

XOR(panel 1, panel 2)
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* *x || % K O o0 0 pixel manifestations of the matrices).
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%* % % * O O (2) Interpolation; (3) Extrapolation As in the neutral split, S consisted
> of any triples |r,0,a]. For interpolation, in the training set, when a = colour
5_% * %% || %K Kk o0 o0 or a = size (the ordered attributes), the values of a were restricted to even-
= Y% % || %% % % O o9 O indexed members of the discrete set V,,, whereas in the test set only odd-indexed
X
Sl Kk x *x ) O O values were permitted. For extrapolation, the values of a were restricted to the
8 +1 lower half of their discrete set of values V,, during training, whereas in the test

S e e S e O O set they took values in the upper half. Note that all S contained some triple

Y% || % K %k O o0 ? 7, 0,a] with a = colour or a = size. Thus, generalisation is required for every

R8¢ Y % % e © question in the test set.

- 4 K * ® (4) Held-out Attribute shape-colour or (5) line-type & in the training
QO |k k| kkok * O O e o set contained no triples with o = shape and a = colour. All structures gov-
S| | *H[| x x © ° °j ®® i les in the test set contained at least one triple with o = sh d
o . _ - . - _ - . erning puzzles in the test set contained at least one triple with o0 = shape an
g a = colour. For comparison, we included a similar split in which triples were
@ :*: *:* :** o o held-out if 0 = 1ine and a = type.
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E F G H E F G H 6: Held-out Triples In our dataset, there are 29 possible unique triples

(b) 7,0,a]. We allocated seven of these for the test set, at random, but such that
each of the a € A was represented exactly once in this set. These held-out
triples never occurred in questions in the training set, and every S in the test

set contained at least one of them.

Raven-style Progressive Matrices. In (a) the underlying abstract rule is an arithmetic
progression on the number of shapes along the columns. In (b) there is an XOR relation on
the shape positions along the rows (panel 3 = XOR(panel 1, panel 2)). Other features, such

as shape type or color, do not factor in. A is the correct choice for both. See the appendix for
more examples, including some that are quite challenging for humans.
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PROCE DU LLY G E N E TI NG MATRICES Model Test (%) Regime Val. (%) Test (%) Diff. | Val. (%) Test(%) Dift.
WReN 62.6 Neutral 63.0 62.6 -0.6 77.2 76.9 -0.3
Al A : . A . O . . O Wild-ResNet 48.0 Interpolation 79.0 64.4 -14.6 92.3 67.4 -24.9
A A A O ResNet-50 42.0 H.O. Attribute Pairs 46.7 27.2 -19.5 73.4 51.7 -21.7
. o - LSTM 35.8 H.O. Triple Pairs 63.9 41.9 -22.0 74.5 56.3 -18.2
A A A A O O O CNN + MLP 33.0 H.O. Triples 63.4 19.0 -44.4 80.0 20.1 -59.9
A A AAA || AA O . ,
Blind ResNet 22.4 H.O. l1ine-type 59.5 14.4 -45.1 78.1 16.4 -61.7
AA ||l AA O O H.O. shape—-colour 59.1 12.5 -46.6 85.2 13.0 72.2
AA ? ? O ? ?
AAA O Extrapolation 69.3 17.2 -52.1 93.6 15.5 -78.1
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Q :. N : *** "‘ @ o ?° [ Neural networks can indeed learn to infer and apply abstract reasoning principles. Our best
performing model learned to solve complex visual reasoning questions, and to do so, it needed to
® ~ .:. N ** ® N 2 induce and detect from raw pixel input the presence of abstract notions such as logical operations
® * 1 and arithmetic progressions, and apply these principles to never-before observed stimuli.
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o [ [ @~ 7 \4 o [ An important contribution of this work is the introduction of the PGM dataset, as a tool for studying
both abstract reasoning and generalisation in models. Generalisation is a multi-faceted
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e 2 1BO ise d St :ﬁ *L* kK | Aok @ o?; @ L l_ QS phenomenon; there is no single, objective way in which models can or should generalise beyond
A B c D A B C D A B C D A B C D their experience. The PGM dataset provides a means to measure the generalization ability of
oe oee|| | o0s @ x|k K T <> Q <> alle . models in different ways, each of which may be more or less interesting to researchers depending
e oo aflalla N R dl ket * ° ° on their intended training setup and applications.
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