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The collective activity of a population of neurons, beyond 
properties of individual cells, is critical for perceptual dis-
crimination behaviors1,2. A fundamental question is how 

functional interactions in a population impact both the encoding of 
sensory information and how this information is read out to guide 
behavioral choices3. A commonly studied feature of population 
coding is noise correlations, the correlated trial-to-trial variability 
over repeated presentations of the same stimulus4,5. Noise correla-
tions can take the form of ‘across-neuron’ correlations between the 
time-averaged spike rates of different neurons or populations, or 
‘across-time’ correlations between the activity of the same neural 
population at different times.

The impact of correlations has been long debated. Much work has 
proposed that they limit the information encoding capacity of a neu-
ral population6–9. Based on the widely held assumption that percep-
tual discrimination performance increases proportionally with the 
amount of sensory information encoded in neural activity10, this has 
been taken to imply that information-limiting correlations hinder 
the ability to discriminate sensory stimuli6,10. Specifically, across-time 
correlations have been proposed to limit the benefit of integrat-
ing noisy information over time for a speed–accuracy trade-off11,12. 
Further, across-neuron correlations are thought to lessen the benefit 
of averaging noisy information across neural populations6,7,9.

However, the effect of noise correlations may be more nuanced, 
as indicated by a separate stream of biophysical studies showing that 
spatially and temporally correlated spiking can more strongly drive 
responses in postsynaptic neural populations13–17. It remains poorly 
tested if and how enhanced signal propagation may have a benefi-
cial impact on behavioral discrimination performance.

We investigated how noise correlations shape behavioral perfor-
mance in perceptual discrimination by studying together not only 
how correlations impact the encoding of sensory information, but 
critically also how they impact the readout of this information by 
downstream neural circuits to guide behavioral choices.

Correlations of posterior parietal cortex activity limit 
sensory coding
To examine how noise correlations affect both stimulus coding at 
the population level and behavioral discrimination performance, 
we focused on the mouse posterior parietal cortex (PPC). The PPC 
participates in transforming multisensory signals into behavioral 
outputs, is essential for perceptual discrimination tasks during vir-
tual navigation18 and has stimulus information related to an animal’s 
choices19–23. It is thus a relevant area to study the impact of corre-
lated neural activity on behavior.

We examined across-time and across-neuron correlations in 
PPC population activity using previously published datasets. To 
study across-time correlations, we used calcium imaging data 
from a sound localization task19 in which mice reported perceptual 
decisions about the location of an auditory stimulus by navigat-
ing through a visual virtual reality T-maze (Fig. 1a). As mice ran 
down the T-stem, a sound cue was played from one of eight possible 
locations in head-centered coordinates. Mice reported whether the 
sound originated from their left or right by turning in that direction 
at the T-intersection (78.0% ± 0.5% correct). During each session, 
the activity of ~50 layer 2/3 neurons was imaged simultaneously. 
Because the same sensory cue (sound location) was presented 
throughout the trial, this task is well suited to study across-time 
correlations.

To study across-neuron correlations, we used calcium imaging 
data from an evidence accumulation task21 in which ~350 layer 
2/3 neurons were imaged simultaneously for each session. During 
virtual navigation, mice were presented with six temporally sepa-
rate visual cues on the left or right walls of a T-maze (Fig. 1f). Mice 
reported which side had more cues by turning in that direction at 
the T-intersection (84.5% ± 1.6% correct). We categorized the visual 
stimuli as having more total left or right cues. Because of the high 
number of simultaneously imaged neurons, this task is well suited 
for studying across-neuron correlations.
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For all analyses, we focused on the period toward the end of the 
T-stem before the mouse had reported its choice and after it had 
received sensory information. This is a window in which neural 
activity may carry sensory information used to inform choice.

We tested how noise correlations impacted the encoding of sen-
sory information in population activity. We computed both pair-
wise correlations (Pearson correlation between activities of two 
neurons) and population-wise correlations (the fraction of total 
population activity variance carried by the largest principal com-
ponent1) for each stimulus category. Pairwise and population-wise 
correlations were positively related and varied consistently across 
conditions in PPC data (Fig. 1b,g and Extended Data Fig. 1g–k,s–w)  

and in population encoding models (Supplementary Note 3 and 
Extended Data Fig. 2a,b). PPC neurons had, on average, positive 
across-neuron and across-time pairwise and population-wise noise 
correlations (Fig. 1b,g and Extended Data Fig. 1g–j,s–v). Since many 
neurons exhibited activity selective for distinct trial types, with dif-
ferent neurons active at distinct time points in the trial (Fig. 1c,h), 
we could decode the stimulus category significantly above chance 
from pairs of temporally offset instantaneous population activity 
vectors (Fig. 1d) and from the population activity vector in one 
time window (Fig. 1i). Stimulus category decoding performance 
was higher in the evidence accumulation dataset because of the 
larger number of recorded neurons. To evaluate how across-time 
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Fig. 1 | Response properties and across-time and across-neuron correlations in mouse PPC during perceptual discrimination tasks. a–e, PPC data 
during the sound localization task. a, Schematic of the task. Left and right sound categories (speaker symbols) indicate the rewarded side of the 
maze (check mark). b, Pairwise (left) and population-wise (right) noise correlations in time-lagged activity, for correct (blue) and error (red) trials. 
c, Trial-averaged estimated spike rate traces for PPC cells (left-preferring, n = 212; right-preferring, n = 172), aligned to the turn frame, normalized to 
each cell’s peak mean activity and sorted by peak time. d, Accuracy of a linear decoder of stimulus category applied to joint population activity, for 
real recorded (black) or trial-shuffled (gray) data. In b and d, error bars report the mean ± s.e.m. across all cell pairs (b: left, n_pairs = 133,860 and 
119,562 for lag 0–1 s and 1–2 s, respectively) and all time-point pairs within the specified lag range from n = 6 sessions. For all comparisons, ***P = 10−4 
(two-sided permutation test). e, Distribution of the signal-noise angle, γ (over n = 6 sessions and all time-point pairs within a 2-s lag). Box plots show 
the median (line), quartiles (box) and whiskers extending to ±1.5 times the interquartile range. The red dotted line denotes the analytically computed 
bound between the information-limiting and information-enhancing regime. f–j, PPC data during the evidence accumulation task. f, Schematic of the 
task. The rewarded side of the maze (check mark) is the one identified by the most numerous visual cues (wall segments with black dots patterns).  
g, Pairwise (left) and population-wise (right) noise correlations in time-averaged activity, for correct (blue) and error (red) trials. Error bars report the 
mean ± s.e.m. across all cell pairs (left, n_pairs = 1,561,202) and early delay and late delay epochs from n = 11 sessions. For all comparisons, ***P = 10−4 
(two-sided permutation test). h, As in c, for all PPC cells (left-preferring, n = 1,840; right-preferring: n = 2,000). Activity traces are averaged over 
spatial bins (about 200 ms). Red rectangles indicate the early delay and late delay epochs. i, Accuracy of a linear decoder of stimulus category applied 
to joint population activity, for real recorded (black) or within-pool trial-shuffled (gray) data. Error bars report the mean ± s.e.m. across n = 11 sessions, 
early delay and late delay epochs and 100 pool splits. ***P = 10−4 (two-sided permutation test). j, As in e, for across-time correlations, using data from 
n = 11 sessions.
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correlations affected the encoding of stimulus category, we shuffled 
instantaneous population activity vectors across trials of the same 
stimulus category, independently at each time point. This shuffle 
destroyed within-trial temporal relationships while preserving 
instantaneous population activity. We disrupted across-neuron cor-
relations by randomly splitting the neural population into two non-
overlapping pools of neurons of equal size and shuffling the trial 
labels separately for each pool within the same stimulus category. 
Importantly, in both datasets, stimulus-decoding performance was 
higher when across-time or across-neuron correlations were dis-
rupted by shuffling, indicating that both forms of correlations lim-
ited stimulus category information in population activity (Fig. 1d,i).

Whether noise correlations limit the information encoded by 
a neural population depends on how they relate to signal correla-
tions (correlations between trial-averaged responses to individual 
stimuli4,5,24). We quantified their relationship using the angle25,26 
between the axis of largest variation at fixed stimulus (noise cor-
relations axis) and the axis of largest stimulus-related varia-
tion (signal correlations axis) in the high-dimensional space of 
population activity (see Fig. 2c for a sketch). Encoding models5,24 
predict that the smaller the signal–noise angle, the more noise 
correlations impair stimulus discrimination due to larger overlap 
between the stimulus-specific response distributions to different 
stimuli (Figs. 2c and 3a). Supporting the observation above that 
showed information-limiting correlations in our datasets, most 
signal–noise angles resided in the information-limiting regime, 
below the signal–noise angle critical value for the transition to 
the information-enhancing regime reported in previous work27,28  
(Fig. 1e,j). Correlations were information-limiting both in ‘easy’ and 
‘hard’ trials with high and low levels of sensory evidence, respec-
tively (Extended Data Fig. 1a,b,d,e,m,n,p,q).

If correlations are detrimental to perceptual behaviors, one 
would expect noise correlations to be lower when animals make 
correct choices and higher when animals make errors. Contrary to 
this expectation, both across-time and across-neuron noise correla-
tions were higher in correct trials than in error trials (Fig. 1b,g). 
Thus, although correlations limit information in population activ-
ity, including on correct trials (Extended Data Fig. 1c,f,o,r), they 
might not impair behavioral performance.

A model of how correlations affect task performance
The above findings lead to the paradoxical suggestion that correla-
tions limit information encoded by a neural population but at the 
same time may be beneficial for making accurate choices. To recon-
cile these observations, we developed a simple mathematical model 
that incorporated both the encoding of stimulus information and 
the readout of this information to form a choice. We compared two 
alternative views of how information in population activity may be 
used to perform a stimulus discrimination task. In the traditional 
view, choice accuracy is proportional to the amount of information 
in a neural population, and thus information-limiting correlations 
constrain task performance. Alternatively, a choice could depend 
on both stimulus information and features of neural activity that 
emerge from correlations, in particular the consistency of informa-
tion across time and neurons in a population.

We simulated a perceptual discrimination task with two possible 
stimuli that had to be converted into two possible corresponding 
choices (c = 1 for s = 1 and c = −1 for s = −1; Fig. 2a). We simulated 
trials of two N-dimensional sets of neural activity features r1 and 
r2, which can alternatively represent neural activity of a pool of N 
neurons at different points in time (for across-time correlations) or 
activity of two different pools of N neurons each (for across-neuron 
correlations). Figure 2 and Extended Data Fig. 3 illustrate the model 
using a case with unrealistically high noise correlations and one 
neuron per feature (N = 1). We display results for N = 20 (Fig. 3) 
and N = 10 (Extended Data Fig. 4) neurons per feature, to show 
that these are largely independent of N, and to document how they 
depend on the two parameters that are key for model behavior and 
comparison with real data: the signal–noise angle and the strength 
of population-wise noise correlations (Supplementary Notes 1  
and 2).

In the encoding model, for each feature, higher trial-averaged 
activity was associated with one sensory stimulus (s = 1), while 
lower mean activity corresponded to the opposite sensory stimu-
lus (s = −1), meaning that the two features showed positive signal 
correlations (Fig. 2c). We simulated noise correlations between r1 
and r2 (noise correlation strength intuitively corresponds to the 
elongation of the ellipses depicting the distributions of responses 
to stimuli), and we varied the signal-noise angle across simulations 

Fig. 2 | A simple encoding-readout model shows how different readouts determine the impact of correlations on task performance. a, Schematic 
conceptualizing two fundamental information processing stages in sensory perception included in the model: sensory coding (mapping from sensory 
stimuli to neural activity) and information readout (mapping from neural activity to behavioral choice). Task-relevant neural activity is recapitulated by 
the stimulus predicted from population activity ( ŝ) and its consistency across features (con.). b, Schematic of the readout model used to model choices. 
Nonneural predictors (bias and real stimulus (light gray boxes on the left); used only in real data analyses to account for the effect of nonrecorded 
neurons) and neural predictors (predicted stimulus and consistency (dark gray boxes on the left); used both in simulations and data analyses) were 
weighted, summed and transformed through a sigmoid function that outputs the binomial probability of a binary choice. c, Example of simulated 
response distributions of two one-dimensional neural features (r1 and r2) to two stimuli (s = 1 and s = −1), modeled as bivariate Gaussian distributions. 
For the correlated example, noise and signal axes were closely but not perfectly aligned (γ = 0.08π). Ellipses denote the 95% confidence intervals of 
stimulus-specific activity distributions. The dashed black lines represent the optimal stimulus-decoding boundary. Purple squares denote regions in 
which r1 and r2 encode consistent stimulus information, that is, the same stimulus is decoded from both features. Marginal response distributions 
and decoding boundaries are shown next to the graphs. d, Accuracy of a linear decoder of stimulus applied to simulated responses was higher for 
uncorrelated (shuffled) responses (correlations limit the encoded stimulus information). e, The fraction of trials in which r1 and r2 encode consistent 
stimulus information is higher for correlated responses (correlations increase consistency). Data in f–h refer to the consistency-independent readout. 
f, The readout map is superimposed on left and middle plots and represented as a grayscale map in the r1–r2 response space. Orange and blue ellipses 
represent stimulus-specific distributions. Shades of gray represent readout efficacy (probability of transformation from encoded stimulus to choice), which 
was independent of consistency for this readout. The corresponding readout model regression coefficients are shown on the right (βŝ for the predicted 
stimulus, and βi1 and βi2 for the consistency-dependent interaction terms between predicted stimuli and neural consistency). g, Pairwise noise correlations 
were higher in error trials. h, Task performance computed using this readout model was higher for uncorrelated (shuffled) responses. Data in i–k refer 
to the enhanced-by-consistency readout (consistency modulation index η = 0.9; Methods). i, Same as f. The readout map was superimposed on the left 
and middle plots. The readout efficacy was higher for consistent trials. j, Same as g. Pairwise noise correlations were higher in correct trials. k, Same as 
h. Task performance was higher for correlated responses, indicating that this readout overcame the information-limiting effect of correlations. In d,e,g,h,j 
and k, error bars report the mean ± s.e.m. over 200 simulations with 5,000 trials each with N = 1, γ = 0.08π, d =

√

0.02 and σ = 0.2. Correlated: ρ = 0.8, 
equivalent to ν = 0.9. Uncorrelated (shuffled): ρ = 0, equivalent to ν = 0.5. For all comparisons, ***P = 10−4 (two-sided permutation test). Model parameters 
were purely illustrative and did not match real data.
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(for example, in Fig. 2c, this angle is small, as signal and noise 
were closely but not perfectly aligned). When signal–noise angles 
were small, noise correlations increased the overlap between the 
stimulus-specific response distributions (cf. orange and blue ellipses 
in Fig. 2c) and decreased the stimulus information encoded by the 
two features jointly (Figs. 2d and 3a). There was a critical signal–
noise angle value below which correlations limited information 
and above which they enhanced information (Fig. 3a). This value 
depended mildly on the noise correlation strength (Fig. 3a) but was 
largely independent of the stimulus information level or the popula-
tion size (Supplementary Note 1 and equation (3)).

We then considered the readout stage of the model. Commonly, 
the choice during a task trial is expected to follow the decoded stim-
ulus. However, because of the apparent importance of correlations 
for accurate choices in our experimental data, we hypothesized that 
the readout of stimulus information might utilize aspects of popula-
tion activity imposed by correlations. Intuitively, correlations imply 
that there is greater consistency in the neural population representa-

tions (Fig. 2e). In our model, we defined consistency as a single-trial 
measure of similarity between the stimuli that are decoded from 
features r1 and r2 separately. In our simulations, a stimulus represen-
tation in a trial was classified as consistent when features r1 and r2 
both signaled the same stimulus (that is, both features were higher 
than average and thus both signaling s = 1 (Fig. 2c) or both features 
were lower than average and thus both signaling s = −1 (Fig. 2c)).

We simulated choices for a binary task discrimination with two 
alternative readout models, formulated as logistic models of the 
dependence of choice on several features of stimulus encoding. 
In the first model, termed the consistency-independent readout, 
the simulated choice in each trial depended only on the stimulus 
decoded from the two features jointly (Fig. 2f). This case followed 
the traditional assumption29 that the choice reflects the stimulus 
decoded from the full population activity (Fig. 2f). In our experi-
mental data, we did not observe a perfect correspondence between 
the stimulus decoded from neural activity and the choice of the 
mouse (the mean ± s.e.m. over sessions and trials of the fraction 
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of times the mouse’s choice matched the decoded stimulus was 
61.0% ± 0.2% in the sound localization dataset and 91.1% ± 0.1% in 
the evidence accumulation dataset). Therefore, in the model, we set 
the probability that in a given trial the choice matched the decoded 
stimulus (termed ‘readout efficacy’) to a value smaller than 100%.

In the second readout model, termed the ‘enhanced-by-consistency’ 
readout, the choice in each trial depended not only on the stimulus 
decoded from both features jointly, but also on the consistency of 
the stimulus decoded from the features separately (Fig. 2i). If r1 and 
r2 reported consistent information about the stimulus, this read-
out was more likely to use the stimulus encoded in neural activ-
ity to inform the choice. This effect was reflected in the positive 
coefficients assigned to the interaction terms between the decoded 
stimulus and consistency (Fig. 2i). In other words, the readout effi-
cacy was higher when the two features were consistent (Fig. 2i). 
Importantly, the average readout efficacy of this model was matched 
to the readout efficacy of the consistency-independent model.

For the consistency-independent readout, correlated activity 
resulted in worse task performance compared to activity in which 
correlations were absent, across the entire information-limiting 
regime of the model’s parameter space (Figs. 2h and 3e). This was 
expected because, with this readout, the task performance directly 
follows the level of stimulus information, with higher information 
resulting in higher performance. Further, in the information-limiting 
regime, noise correlations were higher on simulated error trials than 
on correct trials (Figs. 2g and 3c,d), which was notably inconsistent 
with our PPC data (Fig. 1b,g).

For the enhanced-by-consistency readout, larger noise correla-
tions within the information-limiting region increased the frac-
tion of trials with consistent information (Fig. 3b and Extended 
Data Fig. 4b). As a result, correlations generated a larger fraction 
of trials that were better read out by the enhanced-by-consistency 
readout. Because of this, this readout produced behavioral task per-
formance that was as good as or better than that produced with-
out noise correlations (Figs. 2k and. 3h). When the signal–noise 
angle was not too small but still in the information-limiting region 
(so that the information decrease due to correlations was not too 
large), the enhanced-by-consistency readout compensated and 
even overcame the information-limiting effects of correlations  
(Fig. 3h). Interestingly, signal–noise angles and noise correlation 
values estimated from PPC data resided mostly in this specific 
parameter region (Fig. 3h).

Importantly, for the enhanced-by-consistency readout, 
noise correlations were higher in correct trials than error trials  
(Figs. 2j and 3f,g), matching our experimental PPC findings. Thus, 
the enhanced-by-consistency readout reconciled our experimental 
observations, providing a mechanism whereby correlations limit 
information but benefit task performance.

Correlations and consistency contribute to choices
We then used our experimental measurements of PPC neural activ-
ity to test for signatures of an enhanced-by-consistency readout. A 
key prediction of this readout is that the mouse’s single-trial choices 
should depend not only on the correctness of stimulus encoding 
but also on the consistency of stimulus information. In our experi-
mental data, we defined consistency as the single-trial similarity 
between the stimuli decoded from population activity at different 
points in time (across-time consistency) or between the stimuli 
decoded from separate neuronal pools in the same time window 
(across-neuron consistency). An example of across-time consis-
tency is a trial in which population activity at time t1 signaled the 
same stimulus category as the population activity at time t2. We 
calculated the mouse’s performance for four subclasses of trials, 
defined by the correctness and consistency of the stimulus decoded 
from neural activity in a given trial. In both datasets, the mouse’s 
task performance was higher for trials with correctly decoded 

stimulus information than for incorrectly decoded trials, suggesting 
that the stimulus information carried by PPC neurons was used to 
inform behavioral choices (Fig. 4b,f). Also, the mouse’s task perfor-
mance was higher for trials with consistent information across time 
or across neurons, suggesting that the consistency of neural popu-
lation information was important for accurate choices (Fig. 4a,e). 
Critically, in trials with correctly decoded stimulus information, the 
mouse’s task performance was higher when information was consis-
tent than when it was inconsistent, both across neurons and across 
time (Fig. 4b,f). Further, in trials with incorrectly decoded stimulus 
information, task performance was lower on consistent trials than 
on inconsistent trials (Fig. 4b,f). These findings indicate that the 
stimulus information in the PPC was read out in a manner that, 
in consistent trials, amplified the effect of the decoded stimulus on 
the mouse’s choice, both when the decoded information was correct 
and incorrect.

To rule out that differences in a mouse’s task performance 
between consistent and inconsistent trials were due to higher stim-
ulus information in consistent trials, we sorted trials according to 
the stimulus information level and verified that performance in 
correctly and incorrectly decoded trials was still higher and lower, 
respectively, when information was consistent across neurons or 
across time (Extended Data Fig. 5c–e and g–i).

We further examined the possibility of an enhanced-by- 
consistency readout by developing an analytical understanding of 
how single-trial choices were made by the mouse. We used logis-
tic regression to relate PPC activity to the mouse’s choices. We 
expressed a mouse’s choice on a given trial as a function of features 
of the recorded neural activity: the stimulus decoded from the full 
PPC population activity and its interaction with the across-time or 
across-neuron consistency (Fig. 2b). In addition, we included a pre-
dictor for the experimenter-defined stimulus presented to the mouse 
and a bias term. These two terms captured the stimulus-related and 
stimulus-unrelated information carried by sources other than the 
recorded neurons, such as nonrecorded neurons. The inclusion of 
these terms allowed us to test how much the stimulus information 
in the recorded neural activity explained the mouse’s choice after 
discounting what could be explained by other sources.

The regression coefficients for the stimulus decoded from 
neural activity were positive (Fig. 4d,h), indicating that the neu-
ral stimulus information impacted the mouse’s choice. The coef-
ficients for the consistency-dependent terms were also positive, 
indicating that the readout of PPC activity performed similarly 
to the enhanced-by-consistency readout model from Fig. 2i,j; that 
is, the probability that the choice matched the stimulus decoded 
from neural activity was higher in consistent trials (Fig. 4d,h). We 
tested the specific contribution of the neural-based predictors in 
explaining the mouse’s choices by fitting the logistic regression 
after shuffling the values of these predictors across trials (Fig. 4c,g). 
Shuffling all neural-based predictors (Fig. 4c,g) made it harder to 
predict a mouse’s choice, again demonstrating that neural activity 
contributed to choices. Moreover, shuffling only the neural con-
sistency values, while leaving the stimulus decoded from neural 
activity and the experimenter-determined stimulus intact, resulted 
in worse predictions of a mouse’s choices. Using readout models 
that nonlinearly combined neural population activity to directly 
decode the stimulus regardless of consistency also failed to explain 
choices as well as the enhanced-by-consistency readout model 
(Fig. 4c,g), even though they decoded the stimulus well (Extended 
Data Fig. 1l,x). The specific nonlinear interaction between neu-
ral consistency and decoded stimulus thus was key to form the 
mouse’s choice.

To rule out that the modulation of the readout by consistency 
might just reflect differences in overall stimulus information lev-
els between consistent and inconsistent trials, we verified that con-
sistency provided a similar contribution to predicting a mouse’s 
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choices when we used a more sophisticated logistic model that 
included the magnitude of the stimulus information, instead of 
only the identity of the decoded stimulus (Extended Data Fig. 5b,f). 
Further, to control for and discount potential contributions from 
movement-related neural activity, we verified that neural consis-
tency also contributed to predicting choices when adding to the 
regression the consistency of the mouse’s running speed and direc-
tion (Extended Data Fig. 6c–e).

An enhanced-by-consistency readout benefits task 
performance
Our results show that across-time and across-neuron consistency in 
the experimental data impact a mouse’s choices. We examined the 
implications of this finding for mouse task performance, in the pres-
ence or absence of experimentally measured information-limiting 
correlations. Because correlations cannot be removed experimen-
tally, we instead created a set of simulated choices using the experi-
mentally fit logistic choice regression from Fig. 4. As input to the 
experimentally fit choice regression, we used either trials with 

simultaneously recorded PPC neural activity or trials with neural 
activity shuffled to disrupt across-time or across-neuron correla-
tions. We used these simulated choices to estimate how well the 
mouse would have performed on the task with and without correla-
tions present (Fig. 5a).

We focused only on the contribution of the recorded neural 
population, by computing task performance from choices simu-
lated using all predictors extracted from experimental data and then 
subtracting the task performance computed from choices simulated 
after shuffling across trials the values of neural predictors. This 
calculation is more precise than the one obtained by simply map-
ping the session-averaged PPC parameters to the encoding-readout 
model (Fig. 3h) because it estimates the contribution of correlations 
to task performance using single trials recorded in each session 
and choice readout regression computed in the same session. In 
the sound localization dataset, the ~50 recorded neurons were esti-
mated to increase task performance by ~3.5%, and in the evidence 
accumulation dataset, the ~350 neurons increased task perfor-
mance by ~25% (Fig. 5b,g). Strikingly, although the stimulus infor-
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mation in the recorded neurons was lower with correlations intact  
(Fig. 1d,i), the recorded neurons increased task performance to 
a greater extent when across-time correlations were intact than 
when they were removed by shuffling in the sound localization 
dataset (Fig. 5b). Furthermore, in the evidence accumulation 
task, the recorded neurons contributed similarly to task perfor-
mance with and without across-neuron correlations intact, despite 
lower information with correlations present (Fig. 5g). Thus, the 
enhanced-by-consistency feature of the experimentally fit readout 
could overcome, or at least offset, the information-limiting effect of 
correlations and benefit task performance.

These results incorporate the overall impact of correlations 
on task performance by combining the effects of the encoding 
and readout. To quantify the specific contribution of the readout, 
we again simulated choices from the experimentally fit choice 

regression, except we equalized the stimulus information in the cor-
related and shuffled responses by selecting subsets of trials that had 
the same fraction of correctly decoded stimuli. With this match-
ing, the correlated and shuffled trials differed only in their neural 
consistency (Fig. 5c,h), with a proportion of consistent trials equal 
to those of the full data (Fig. 5b,g). For both datasets, the estimated 
contribution to task performance of the recorded neurons was 
higher when correlations were intact than when they were disrupted 
(Fig. 5c,h). This result shows that the readout of PPC activity was 
more efficient in extracting information from correlated than from  
uncorrelated data.

These results also indicate that the readout of stimulus infor-
mation from PPC activity is suboptimal. From the ~50 neurons 
recorded in the sound localization task and ~350 neurons in the 
evidence accumulation task, we were able to decode the stimulus 
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at ~60% and ~80% correct, respectively (Fig. 1d,i). These popula-
tions therefore could have increased task performance by ~10% and 
~30% above chance, respectively, if stimulus information was read 
out optimally. However, these populations only increased task per-
formance by ~3.5% and ~25%, respectively (Fig. 5b,g). Therefore, 
in both datasets, the recorded neurons apparently increased task 
performance by a smaller amount than would have been possible if 
all their stimulus information was converted into choice, indicating 
that the PPC stimulus information is read out for behavior, but not 
optimally.

The theoretical analysis of the encoding-readout model (Fig. 3i)  
predicted that, when population activity is correlated, an 
enhanced-by-consistency readout leads to higher task performance 
than a consistency-independent readout with matched readout effi-
cacy. To test this prediction on PPC data, we generated simulated 
choices by inputting real neural activity into the experimentally fit 
regression that incorporated across-time and across-neuron con-
sistency. We also generated simulated choices using an alternative 
choice regression that included only the decoded stimulus pre-
dictor, regardless of its consistency (Fig. 5d–f,i,j). For fairness of 
comparison and to match the experimental data, the coefficients 
for this second choice regression were selected to yield the same 
readout efficacy as for the experimentally fit regression. The esti-
mated contribution of the recorded neurons to task performance 
was higher with the experimentally fit choice regression that used 
consistency than with the consistency-independent choice regres-
sion matched in readout efficacy (Fig. 5f,j). These experimental 
findings, in agreement with model predictions, suggest that the 
enhanced-by-consistency readout is well suited for forming behav-
ioral choices in the presence of information-limiting noise correla-
tions, such as those found in the PPC.

In the sound localization experiments, we also had experimental 
data19 from the auditory cortex (AC). Relative to the PPC, in the AC 
we observed similar signal–noise angles, but weaker noise correla-
tions, leading to a smaller information-limiting effect of correlations, 
and a much lower impact of consistency on the readout (Extended 
Data Fig. 7). Therefore, an enhanced-by-consistency readout may 
be more beneficial for PPC activity than for AC activity.

A model of enhanced-by-consistency information 
transmission
We developed a biophysical model for the downstream transmis-
sion of the PPC stimulus information to understand potential 
mechanisms for the behavioral benefit of information consistency 
across neurons and time. Our model was based on previous 

observations that correlations in the presynaptic inputs to a neu-
ron, either across neurons or time, elicit larger firing rates in post-
synaptic neurons with a short integration time constant through a 
coincidence-detection mechanism16,29. In our model (Fig. 6a), two 
presynaptic input spike trains, representing the summed inputs 
from two neuronal pools, were integrated by a postsynaptic ‘read-
out’ spiking neuron. The neural responses to two different stimuli 
were simulated (Fig. 6a). We assumed that the average response to 
the two stimuli was the same across the two input pools, leading 
to positive signal correlation, and we implemented positive noise 
correlations, both across input pools and across time (Fig. 6b,c,h). 
This ensured that noise and signal correlations were aligned and 
thus information-limiting. Therefore, and in agreement with our 
encoding models (Fig. 3), higher correlation strengths in the input 
pools, that is, enhanced across-pool synchrony and/or across-time 
correlations (Fig. 6b,c,h), more strongly limited the information 
contained in the inputs (Fig. 6d,i).

We then considered how information-limiting correlations in 
the inputs to a readout neuron with a short but realistic29 integration 
time constant (~5–10 ms) affected information transmission. First, 
input correlations enhanced information transmission by increas-
ing the average firing rate of the readout neuron in response to each 
stimulus (Fig. 6e,j). However, correlations also limited information 
transmission by increasing the variance of the readout’s firing activity 
(Fig. 6e,j). To quantify the trade-off between these factors, we mea-
sured the coefficient of variation (CV) of the readout activity and the 
gain of transmitted information (accuracy of stimulus decoded from 
the readout neuron’s firing). The coefficient of variation decreased, 
and the transmitted information increased, with increasing corre-
lations (Fig. 6f,g,k,l). Thus, correlations in inputs to a neuron have 
advantages in enhancing the neuron’s output rate that outweigh their 
disadvantages in increasing the neuron’s output noise.

By systematically varying the model parameters, we demon-
strated that input correlations enhance readout information from 
a postsynaptic neuron, even when decreasing input informa-
tion, when the readout integration time constant is short enough 
so that the average amount of excitatory postsynaptic potentials 
received during an integration window is much smaller than the 
gap between the spiking threshold and resting potential of the read-
out neuron (Extended Data Fig. 8). In this regime, output firing 
is driven by input fluctuations. Correlated fluctuations on a short 
timescale increase the frequency with which the readout neuron 
reaches the firing threshold, thus enhancing the transmission of 
both neural activity and information (Supplementary Note 5 and 
Extended Data Fig. 8).

Fig. 6 | A biophysical model for the enhanced-by-consistency readout model. a, Schematic of the model. A leaky integrate-and-fire (LIF) readout neuron 
receives stimulus-modulated spike trains from two input pools. A linear stimulus classifier of the readout activity generates the transmitted output, c. 
b, Cross-correlograms of the two input spike trains for different values of the across-pool (left) and across-time (right) correlation parameters α and τC, 
respectively (mean input rate Rin = 2 Hz). c, Schematic illustrating across-pool correlations between the input activity. τobs is the length of each simulated 
trial. d, Input stimulus-decoding accuracy as a function of the across-pool correlation strength α. e, Mean and standard deviation of the readout activity 
(normalized to their reference value in absence of correlations) as a function of α. f, Coefficient of variation (CV) of the readout activity as a function 
of α, normalized by its value in absence of input correlations. g, Gain in the stimulus information transmission from the input to the readout neuron 
(equation (9) and Supplementary Note 5) as a function of α. In d–g, τm = 5 ms, Rin = 2 Hz, τC = 100 ms. All the quantities were computed on the input or 
output spike counts measured on time windows of length τobs. h, Schematic illustrating across-time correlations between the input activity at two different 
time points t1 and t2. i–l, The quantities as in d–g showed similar trends when computed as a function of the across-time correlations τC. In i–l τm = 5 ms, 
Rin = 2 Hz, α = 0.9. In d–l, data are presented as mean ± s.e.m. over n = 20 simulations. m, Time-lagged pairwise noise correlations computed separately 
on correctly transmitted and incorrectly transmitted simulated trials, across time lags of 500 ms (for 0-ms time lag P = 1.72 × 10−117, t = 33.4 (−1.65, 1.65); 
for 500-ms time lag P = 1.24 × 10−195, t = 57.8, (−1.65, 1.65); two-sided t-test, n = 200 independent sets of equalized correct and error trials). n, Fraction 
of deviance explained for the transmitted output c (output of the stimulus classifier on readout neuron’s activity) for the enhanced-by-consistency and 
the consistency-independent readout regressions (P = 4.58 × 10−23, t = 21.8, (−1.69, 1.69), two-sided t-test, n = 20 independent sets of equalized correct 
and error trials). o, Values of the coefficients of the enhanced-by-consistency readout regressions. The coefficients βŝ, βi1 and βi2 correspond to the 
stimulus-decoded regressor and the two consistency regressors, respectively (Methods). In m–o, box plots show the median (line) and first and third 
quartiles (box), and whiskers extend to ±1.5 times the interquartile range; in simulations τm = 5 ms, Rin = 6 Hz, α = 0.9, τC = 500 ms.
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Importantly, for biophysical parameters consistent with the 
coincidence-detection regime, the model predicted key features 
of PPC data. We divided the model’s simulated trials into cor-
rectly transmitted and incorrectly transmitted trials, namely 
trials in which the stimulus identity was correctly or incor-
rectly decoded from the activity of the readout neuron. We then 
analyzed the simulated data with the logistic readout regres-
sions used for the analysis of PPC data. First, as in PPC data, the 
enhanced-by-consistency readout regression explained a larger 
fraction of the variance of the model choices (that is, the outcome 
of the stimulus-decoding algorithm applied on the readout activity) 
with respect to a consistency-independent readout (Fig. 6m). Also, 
the enhanced-by-consistency readout fitted on the model choices 
revealed that the transmission of stimulus information increased 
when the input activity carried consistent information across pools 

(Fig. 6n). Second, correlations in the input spike trains were stron-
ger for correctly transmitted trials than for incorrectly transmitted 
trials (Fig. 6o), as in the PPC data (Fig. 1b,g).

Thus, a coincidence-detection information transmission model 
suggests how the enhanced-by-consistency readout may benefit 
behavior. Correlations in the inputs to a neuron can enhance the 
transmission of stimulus information from a neuron’s inputs to its 
output, even though these correlations limit the information con-
tained in the inputs.

Discussion
Our results show that noise correlations limit information at the 
encoding stage, but they also enhance consistency in neural codes, 
which improves readout. The trade-off of these two effects defines 
the overall impact of correlations on task performance. Strikingly, 
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Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


ArticlesNaTurE NEuroSCiEnCE

we found that noise correlations can enhance task performance 
despite limiting the information capacity of a neural population.

Much work has emphasized that the information-limiting 
effect of correlations in sensory areas may be a bottleneck for 
behavioral performance1,6,7. A largely separate set of theoretical 
and biophysical work has alternatively proposed that correlations 
improve the propagation of neural activity13,14,16,17,30. However, 
whether the advantages of correlations for signal propagation can 
overcome their information-limiting effect has not been fully clari-
fied. Theoretical work on signal propagation has seldom specified 
whether the transmitted activity is informative17, and its connec-
tion to behavior remains unclear. Recent work has proposed that 
information-limiting across-neuron correlations may benefit infor-
mation propagation in the presence of output nonlinearities17. Our 
models extend these results by identifying the biophysical condi-
tions for which across-time and across-neuron correlations over-
come their information-limiting effects by increasing the efficacy 
of information transmission. Experimental support for a role of 
correlations in facilitating the readout of population information 
to aid behavior has also been limited31,32. Although a recent study 
has suggested a beneficial role of correlations by reporting higher 
correlation levels during correct behaviors31, these effects have 
not been reported when correlations limit information encoding. 
Remarkably, in PPC data and in the biophysical model presented 
here, the advantages of correlations for signal readout were large 
enough to compensate and overcome their negative encoding 
effects. Moreover, both our experimental and modeling results 
revealed a key computation underlying this effect: the amplification 
of the readout of stimulus information when neural activity is con-
sistent across neurons or time.

Here we developed a formalism to address how the information- 
limiting effects of correlations on encoding and their benefits for 
signal readout intersect. Our approach provides a generally appli-
cable framework to dissect the contribution of correlated neural 
activity to perceptual behaviors. We anticipate that this approach 
can be applied to different tasks and brain areas. Sensory and asso-
ciation cortices differ in the magnitude of their correlations, with 
higher correlations in association areas19. This difference could 
relate to the potential functions of each area, and our initial obser-
vations between the PPC and AC suggest that the best trade-off 
between the effect of correlations on encoding and readout may 
also vary across areas. In sensory cortices, a major function may be 
to encode rapidly changing and high-dimensional sensory features 
regardless of whether they are used for the immediate behavior 
at hand. In this case, weaker correlations may be advantageous to 
lessen information-limiting effects, and a readout sensitive to con-
sistency for propagating the signals may be less critical. This view 
is compatible with reciprocal relationships between noise correla-
tion levels and behavioral performance in sensory cortices1. In con-
trast, because association cortices are closer to behavioral output, 
they may only need to encode a moderate amount of behaviorally 
relevant sensory information, but this information should have a 
strong impact on behavior. In these areas, higher correlations could 
be beneficial because the consequence of reducing encoded infor-
mation is small, whereas the ramifications of failing to propagate 
signals to drive behavior is higher. Thus, in association areas, the 
best trade-off may involve some redundancy in the neural repre-
sentation coupled with a readout mechanism that uses this redun-
dancy to enhance signal propagation to inform choice, as we found 
here. We anticipate that the formalism described here will allow 
the design of causal tests of the actual readout used in the brain 
during perceptual discrimination tasks, such as with holographic 
perturbations33.

Noise correlations can reflect interactions between cells, shared 
covariations due to common inputs, general fluctuations in 
behavioral state or network excitability, or variations with stimuli 

within the same category2. Previous work and our simulations 
(Supplementary Note 6 and Extended Data Fig. 9) show that positive 
information-limiting correlations (such as those observed in PPC) 
can be created by shared common inputs34–37 or stronger excitatory 
connectivity between neurons with similar stimulus tuning35,36, fea-
tures which have been reported in cortical circuits38,39. Although our 
present data cannot disambiguate between these possibilities, this 
shared variability, regardless of its origin, acts as noise for decod-
ing, because it cannot be reduced by integrating information over 
more cells or longer times, but it also helps signal propagation by 
generating more consistent neural representations. Thus, our con-
clusions are expected to hold regardless of the biophysical origins of 
the observed noise correlations.

Many studies of neural coding implicitly or explicitly assume 
that the readout of sensory information is optimal and interpret 
neural codes with higher sensory information as being more rel-
evant for perception6,28,29. Part of the reason is that the presence and 
shape of non-optimality are unknown. If the readout is not optimal, 
then neural codes with higher information are not necessarily the 
most relevant ones for perception. Our data suggest that stimulus 
information in population activity is not used optimally to produce 
accurate behavioral choices. Our work provides a measure of both 
the nature of readout non-optimality and its implication for the 
behavioral relevance of a neural code. Previous work has shown that 
even simple stimulus decoders of population activity trained sub-
optimally to decode single-cell activity separately and then joined 
together can decode stimulus information accurately40–42. Together 
with our results, this evidence suggests that correlations do not nec-
essarily complicate the decoding of sensory information and may 
offer advantages for turning sensory information into appropriate 
behavioral choices.
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Methods
No statistical methods were used to predetermine sample size of imaging 
experiments in mice. The experiments were not randomized. The investigators 
were not blinded to allocation during experiments and outcome assessment.

Subjects, behavioral task and two-photon imaging. This study represents 
an independent analysis of mouse calcium imaging experiments described 
previously19,21 and in publicly available data43,44. A brief summary of the 
experimental procedures is provided here; full details are described in previous 
studies19,21. All experimental procedures were approved by the Harvard Medical 
School Institutional Animal Care and Use Committee.

Both experiments used a modified version of a previously described visual 
virtual reality system18. Head-restrained mice ran on a spherical treadmill, while 
images of a virtual maze were projected on a half-cylindrical screen. Forward/
backward translation in the maze was controlled by treadmill changes in pitch. 
Rotation in the virtual environment was controlled by roll of the treadmill. The 
virtual maze was constructed using the Virtual Reality Mouse Engine (ViRMEn) in 
MATLAB45.

Sound localization task dataset. Imaging data were acquired from five male 
C57BL/6J mice (The Jackson Laboratory), aged 6–8 weeks at the initiation of 
behavioral task training. Imaging began 4–6 weeks after viral injection and 
continued for 4–12 weeks.

Mice ran down the stem of the virtual T-maze, while sound stimuli were 
delivered from eight possible locations (−90°, −60°, −30°, −15°, +15°, +30°, +60° 
and +90°) using four electrostatic speakers positioned in a semicircular array, 
centered on the mouse’s head. The sound stimulus was activated when the mouse 
passed an invisible spatial threshold at ~10 cm into the T-stem. The stimulus 
was repeated after a 100-ms gap; repeats continued until the mouse reached the 
T-stem. Task difficulty was modulated by the direction of the incoming stimulus. 
To receive a reward (4 μl water), mice had to judge the location of sound stimuli to 
be either on the left or right, and to report their decisions by turning left or right 
at the T-intersection. A ‘reward tone’ was played as the water reward was delivered 
on correct trials (when the mouse had reached ~10 cm into the correct arm of the 
T-maze), and a ‘no-reward tone’ was played when the mouse reached ~10 cm into 
the incorrect arm on error trials. The intertrial interval was 3 s on correct trials and 
5 s on error trials. Mice performed ~200 trials (range, 125–251) per session.

Imaging was performed on alternating days from the AC and PPC on the 
left hemisphere (PPC centered at 2 mm posterior and 1.75 mm lateral to bregma; 
AC centered at 3.0 mm posterior and 4.3 mm lateral to bregma). In each session, 
~50 neurons (range, 37–69) were simultaneously imaged using a two-photon 
microscope (Sutter MOM) operating at a 15.6-Hz frame rate and at a resolution of 
256 × 64 pixels (~250 μm × 100 μm). ScanImage (version 3, Vidrio Technologies) 
was used to control the microscope. Imaging data were acquired at depths of 
between 150 and 300 μm, corresponding to layers 2/3. Seven AC and seven PPC 
fields of view from five mice were analyzed.

Evidence accumulation task dataset. Imaging data were acquired from five male 
C57BL/6J mice (The Jackson Laboratory), aged 8–10 weeks at the initiation of 
behavioral task training. Imaging began at least 4 weeks after viral injection and 
was continued for up to 12 weeks.

Mice run down the stem of a virtual T-maze with predominantly gray walls, 
encountering six visual cues (white wall segments with black dots) at fixed 
locations. Each cue appeared on either the left or right wall, with only one cue 
visible at a time. To receive a reward (4 μl 10% sweetened condensed milk), mice 
had to determine whether more cues were presented on the left or the right 
and, after a short stretch of maze without additional cues (90 cm), turn at the 
T-intersection toward the direction with more cues (left for 6-0, 5-1 and 4-2 trials; 
right for 2-4, 1-5 and 0-6 trials). Task difficulty was modulated by varying the 
difference between the number of left and right cues (net evidence). The sequence 
of cues was determined randomly for each trial of a given net evidence. On trials 
having zero net evidence (3-3 trials), a random location was rewarded. Intertrial 
interval duration was 2 s for correct choice and 4 s for incorrect choice. Mice 
performed ~300 trials (range, 231–414) in a typical session.

Imaging data were acquired from the left PPC (PPC centered at 2 mm 
posterior and 1.75 mm lateral to bregma). In a given session, ~350 neurons 
(range, 188–648) were simultaneously imaged using a custom-built two-photon 
microscope operating at a ~30-Hz frame rate and at a resolution of 512 × 512 pixels 
(~700 μm × 700 μm). The microscope was controlled by ScanImage (version 5; 
Vidrio Technologies). Imaging data were acquired at depths of between 100 and 
200 μm below the dura. Eleven fields of view from five mice were analyzed.

Imaging data processing. After motion correction46, correlations in fluorescence 
time series between pixels within ~60 μm were calculated. Fluorescence sources 
(putative cells) were identified by applying a continuous-valued eigenvector-based 
approximation of the normalized cuts objective to the correlation matrix, 
followed by k-means clustering segmentation19,21. To estimate potential neuropil 
contamination, the cell body fluorescence signal was regressed against the signal 
from surrounding pixels during the imaging frames when the cell of interest 

was not active, and then neuropil contamination was removed during the ΔF/F 
calculation by subtracting a scaled version of the neuropil signal from the cell 
body signal. All fluorescence traces were deconvolved to estimate the relative 
spike rate in each imaging frame47. The deconvolution alleviated the possible 
artificial lengthening of timescales of across-time correlations due to slow calcium 
transients. The timescales of single neuron activity of the deconvolved signal were 
~200 ms19,21, much shorter than the timescales of across-time correlations (~>1 s), 
and were shorter in the AC than in the PPC19, suggesting that the deconvolution 
was effective at preventing major artificial inflations of across-time correlations 
timescales.

Data inclusion and task epoch selection for encoding and readout analyses. 
Sound localization task dataset. For the analysis of across-time correlations in the 
PPC, population activity data were temporally aligned to the imaging time frame 
of the turn, defined as the frame in which the mouse entered the short arm of the 
maze. Since it is reasonable to assume that the animal computes its choice after the 
stimulus presentation but before the turn, the analysis focused on the 39 frames 
preceding the turn frame (this number of frames was chosen because it covered the 
maximum portion of the pre-turn period that was commonly available across all 
recording sessions). One of the seven PPC recording sessions used in our previous 
published work19 was excluded due to the large unbalance of left/right stimuli that 
were presented to the mouse across trials in that session, which would result in too 
few trials available for our analyses.

For the analysis of across-time correlations in the AC, population activity data 
were temporally aligned to the imaging time frame of the first auditory stimulus 
presentation, and the analysis focused on the 50 frames after that frame (this 
number of frames was chosen because it covered the maximum portion of the 
poststimulus period that was commonly available across all recording sessions). 
AC neural data aligned to the turn did not encode a sufficient amount of stimulus 
information for following analyses. One of the seven AC sessions used in our 
previous published work17 was excluded due to the large unbalance of left/right 
stimuli that were presented to the mouse across trials in that session.

Evidence accumulation task dataset. PPC population activity data were first 
grouped into spatial bins (3.75 cm per bin) covering the whole T-maze (long 
and short arm) by averaging population activity first in each bin (two or three 
imaging frames per bin for each trial) and then over epochs of four spatial bins 
each (about 200 ms). We used the same ten epochs defined in ref. 21. We plotted 
results of population activity data recorded in the early delay and late delay epochs. 
During the delay epochs, the cue presentation was completed but the animal had 
not yet committed to a final turn (these epochs correspond to the four spatial bins 
beginning 15 and 37.5 cm, respectively, after the offset of the final cue). Therefore, 
it is reasonable to assume that the animal’s decision is formed in these epochs. All 
11 sessions in the original work19 were used. We did not use trials with zero net 
evidence (<10% trials in 2/11 sessions).

Selectivity of single cells to stimulus category. For Fig. 1c,h, we computed the 
selectivity of single cells to stimulus category. For the sound localization task, 
stimulus category corresponds to the direction of incoming auditory stimuli. Each 
stimulus category comprises four different sound locations (left: −90°, −60°, −30° 
and −15°; right: +15°, +30°, +60° and +90°). For the evidence accumulation task, 
stimulus category corresponds to the side of the maze where the majority of the 
visual cues were presented (left: 6-0, 5-1 and 4-2 trials; right: 2-4, 1-5 and 0-6 
trials).

The selectivity index18 (SI) was quantified according to equation (1):

SI =
mean ΔF/Fright trials − mean ΔF/Fleft trials
mean ΔF/Fright trials + mean ΔF/Fleft trials

(1)

Cells with an SI greater or smaller than zero were classified as right-preferring 
or left-preferring cells, respectively.

Pairwise noise correlations. For each neuron pair and time-points pair in the 
trial epoch selected for analyses, we quantified across-time pairwise correlations 
as the Pearson correlation between the activity of neuron 1 at time t1 and the 
activity of neuron 2 at time t2 across trials with the same stimulus category. Results 
were averaged across all neuron pairs, all time-point pairs with the same time lag, 
across stimuli and across trials subsamples. We quantified across-neuron pairwise 
correlations as the Pearson correlation between neuron pairs recorded in a single 
session, across trials sharing the same stimulus category. Results were averaged 
across stimuli, across trial subsamples and across early delay and late delay epochs. 
We quantified noise correlations separately for correct and error trials. To control 
for differences in trial numerosity, we subsampled trials to equalize the number of 
correct and error trials in each recorded session. Results were averaged over ten 
instantiations of random subsampling.

Population-wise noise correlations. We quantified the across-neuron 
population-wise correlations by performing principal-component analysis (PCA) 
on the population response to all trials sharing the same stimulus category. The 
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population-wise noise correlation, ν, was defined as the fraction of variance 
explained by the first principal component of the whole-population activity 
(concatenated population activity of the two pools for across-neuron correlations; 
concatenated activity of the two considered time points for across-time 
correlations). For across-neuron correlations, results were first averaged across 
stimuli, then across trials subsamples and eventually pooled across early delay and 
late delay epochs. For across-time correlations, results were averaged first across 
all time-point pairs sharing the same lag between each other, then across stimuli 
and finally across trial subsamples. We quantified across-time and across-neuron 
population-wise noise correlations1 separately for correct and error trials. To 
control for differences in trial numerosity, we randomly subsampled trials to 
equalize the number of correct and error trials in each recorded session. Results 
were averaged over ten instantiations of random subsampling. Population-wise 
noise correlations, when computed on a small number of trials, suffered from 
finite-sampling bias. Since we equalized trials between correct and error choices, 
the comparison was not affected. However, to map the experimental data to 
the model, we corrected for the finite-sampling bias. We estimated the bias by 
computing the population-wise noise correlation index for randomly selected 
subsamples of trials with progressively increasing size (from five to the maximum 
number of available trials) and then using polynomial extrapolation.

Analysis of stimulus encoding and consistency. For encoding and consistency 
analyses, we considered information about stimulus category. Information about 
stimulus category carried by population activity was extracted by decoding 
the most likely stimulus category presented to the animal in each trial using 
a C-Support Vector Machine (C-SVM) classifier with a linear basis function 
kernel48, implemented using the libsvm library49. For each imaging session, we 
first subsampled trials randomly such that the left/right stimulus categories were 
equally represented in the data (sound localization task dataset: no more than 
13% of removed trials per session; evidence accumulation task dataset: no more 
than 15% of removed trials per session). Then, we randomly split the remaining 
trials ten times into 50/50 training/testing sets, such that left and right stimulus 
categories were equally represented in both training and testing sets. For each trial 
split, we trained the C-SVM on the training set and we tested on the test set, which 
was left out of the fitting procedure. The regularization hyperparameter (C) was 
selected by maximizing the threefold cross-validated decoding accuracy in the 
training set. For the analyses that required computing a posterior probability of the 
decoded stimulus given the observed population activity, we used Platt scaling to 
calibrate posterior probabilities on the binary outputs of the C-SVM50.

Again, using the libsvm library49, we decoded stimulus category considering 
also nonlinear classifiers: we decoded the most likely stimulus category using a 
C-SVM with radial and quadratic basis function kernels.

For the across-time correlations analysis, for any considered pair of time points, 
we defined the activity in trial as consistent if the stimulus decoded from the 
population activity at each of the two time points coincided. For the across-neuron 
correlations analysis, we first split the neuronal population recorded in each 
session into two randomly selected, equally sized pools of neurons. A total of 100 
random splits were performed. For each random split, we defined the activity in 
trial as consistent if the stimulus decoded from the population activity of each 
individual pool coincided.

Quantifying the angle between the signal and noise axes. We quantified the 
angle, γ (∈ [0, π/2]), between the direction of maximum stimulus variation (signal 
correlations axis) and the direction of maximum noise variation (noise correlations 
axis)25,26 in the neural population response space. The signal correlations axis was 
defined as the vector connecting the mean responses to the two stimuli. The noise 
correlations axis was computed as the direction of the first principal component 
obtained by applying PCA to all single-trial responses at fixed stimulus category. 
The angle between signal correlation and noise correlation axes was computed 
separately for each stimulus category (γs=−1, γs=1) and then averaged according to 
equation (2):

γ = arccos
(√

cos2γs=−1 + cos2γs=1

)

(2)

This weighted average of the stimulus-specific angles facilitates comparisons 
between data and model (Supplementary Note 4).

The computation of γ uses the population’s covariance matrix. Since in the 
accumulation evidence task the dimensionality of the dataset (~350 neurons) 
was larger than the number of trials per session (~200), we first performed a 
PCA to keep only those components that explained 95% of the total variance (the 
dimensionality of the dataset was reduced to 59 ± 18 components (mean ± s.e.m.) 
across sessions). This did not substantially change the values of the angles (we 
obtained a median value of the signal–noise angle of 0.21π in Fig. 1j with the 95% 
variance cutoff, whereas we would have obtained a value of 0.25π had we used all 
neurons without variance cutoff, with both values inside the information-limiting 
region). However, we used the variance cutoff because it led to better stability of 
individual results when removing random fractions (10%, 20%,...) of data.

For across-time correlations, γ was computed in the space defined by the 
concatenated population activity at the two time points considered for the analysis. 

For across-neuron correlations, γ was computed in the full-dimensional space 
defined by the population responses, and did not depend on the random split in 
two pools.

Mathematical model of encoding and readout with two N-dimensional neural 
features. We developed a simple model of how two N-dimensional neural activity 
features, r1 and r2 (each representing the firing rates of two different pools of N 
neurons each for across-neuron correlations, or the population activity of the same 
pool of N neurons at two different times for across-time correlations), encode 
information about a binary stimulus, and how this information is read out to 
inform choice in a simulated stimulus discrimination task.

Neural encoding (stimulus–response) model. The encoding (stimulus–response) 
models describes the neural activity of the two N-dimensional features (r1 and r2) 
in response to two stimuli (s = −1 and s = 1).

We chose a simple model accounting for the observation that average 
pairwise correlations in the PPC neural population were positive (Fig. 1b,g). 
Distributions of stimulus-specific neural responses r(s)k  for each N-dimensional 
feature were modeled as N-dimensional multivariate Gaussians with mean μ(s)

k  and 
stimulus-independent covariance ∑k given by equation (3):

r(s)k ∼ N

(

μ(s)
k , Σk

)

μ(s)
k = sign (s) ∗ d ∗ wsignal,k

Σk =













c1,1 c1,2 · · ·

c2,1 c2,2 · · ·

...
...

. . .













, ci,j =
{

σ2, if i = j

ρwithinσ2, if i ̸= j

(3)

where s indexes the stimulus category and k the neural feature (k = 1,2); ρwithin 
parametrizes the strength of correlation between neurons within the same feature; 
and wsignal,k represents the signal correlation direction in the N-dimensional space 
of each feature. For simplicity, we assumed equal variance σ for each neuron i and 
equal covariances ∑k for the two pools k = 1,2. The signal–noise angle, γ, was the 
same across stimuli in this model.

The joint population activity was simulated as a 2N-dimensional multivariate 
Gaussian with mean and covariance given by equation (4):

μ(s)
= sign (s) ∗ d ∗

[wsignal,1

wsignal,2

]

= sign (s) ∗ d̂ ∗ wsignal

Σ =

[

Σ1 ρσ2JNxN

ρσ2JNxN Σ2

]

(4)

wsignal indicates the normalized signal correlation direction in the 2N-dimensional 
space, JNxN indicates the matrix with all elements equal to one and ρ determines 
the correlation between the two neural features. This correlation matrix allowed 
us to mimic the effect of the real-data shuffling procedure of selectively removing 
correlations between the two N-dimensional features, while keeping intact 
single-feature correlation structures, by simply setting ρ to zero. For simplicity 
we also set ρ = ρwithin for correlated activity. The means of the two response 
distributions (μ(s=1) and μ(s=−1)) were symmetrically located around the origin of the 
2N-dimensional space, at distance d̂. Together, the parameters d̂ and σ control the 
overlap between the two stimulus-specific response distributions.

The first eigenvector of the covariance matrix, representing the direction of 
the noise correlation axis, is given by wnoise = (1, 1, …, 1) /

√

2N , with eigenvalue 
λ1 = (Nρ + 1−ρ)σ2. The other 2N − 1 eigenvectors form an orthonormal basis with 
the vector wnoise and the 2N − 1 corresponding eigenvalues are given by λI = (1−ρ)σ2. 
The value of the largest eigenvalue, λ1, normalized by the sum of all eigenvalues 
(total response variance) yields the population-wise noise correlation index ν as a 
function of the pairwise correlation index ρ, according to equation (5):

ν =
λ1

∑

i λi
=

1 + ρ (2N − 1)
2N . (5)

We denote with

γ = arccos
( wsignal · wnoise

||wsignal|| ||wnoise||

)

(6)

the angle between the signal correlations and the noise correlation axes in the 
2N-dimensional space. The signal correlation axis orientation, wsignal, was randomly 
sampled across all vectors satisfying equation (6) for the fixed γ and wnoise.

We quantified the amount of stimulus information carried by the simulated 
responses (r1 and r2) as the accuracy of a linear decoder of stimulus identity applied 
to the responses. We then applied the same classifier to the responses r1 and r2 
of each pool separately. For the simulations in Fig. 2 and Extended Data Fig. 3, 

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


ArticlesNaTurE NEuroSCiEnCE

we set N = 1, d̂ =
√

0.02, σ = 0.2 and ρ = 0.8, and we performed 200 simulations 
with 5,000 trials per stimulus (Fig. 2) or ten simulations with 50,000 trials per 
stimulus (Extended Data Fig. 3). For the simulations in Fig. 3 and Extended Data 
Fig. 4, we set N = 20, 10, d̂ = 0.15 and σ = 0.2 (consistent with the value found 
for both experimental datasets; across-time: σ = 0.195 ± 0.005 (mean ± s.e.m.); 
across n_t = 39 time points and n = 6 sessions; across-neuron: σ = 0.230 ± 0.012 
(mean ± s.e.m.) across early delay and late delay epochs and n = 11 datasets), and 
we performed 100 simulations with 300,000 trials per stimulus each.

Model of choice generation in a simulated discrimination task. We simulated the 
process of generating a binary choice in each trial from neural activity through a 
logistic regression readout model given by equation (7):

logit (p (c = 1|x)) = β0 + βŝ ŝ +
βi1
2 (̂s + 1) con +

βi2
2 (̂s − 1) con (7)

where ŝ ( ŝ = −1 and ŝ = 1) indicates the stimulus decoded from the concatenated 
activity of the two N-dimensional neural features; ‘con’ is a ‘consistency’ binary 
variable that is equal to 1 if the stimuli decoded individually from each neural 
feature are the same, and 0 otherwise; x indicates the entire set of predictors 
( ŝ, con).

The model coefficients β0, βŝ , βi1 and βi2 control the relative impact of the 
different model predictors on the simulated choice. The values for the model 
coefficients were set as follows: We first defined a consistency modulation index 
η, ranging from 0 to 1, to control the relative strength of neural consistency in the 
readout. We then derived the readout efficacy, which we defined as the probability 
of conversion from ŝ to c, for each of the four possible combinations of predictors 
values, from the modulation index η and a reference readout efficacy α (̂s) 
according to equation (8):

p (c = ŝ| [̂s, con]) =

{

α (̂s) + η (1 − α (̂s)) , con = 1

α (̂s) − η (α (̂s) − 0.5) , con = 0
(8)

where α (̂s) takes values between 0.5 and 1. For the simulations in Figs. 2 and 3 and 
Extended Data Figs. 2–4, we arbitrarily set α(0) = α(1) = 0.75. Given the readout 
efficacy values from equation (8), we used equation (7) to compute the model 
coefficients corresponding to the chosen modulation index η.

Logistic regression of the mouse’s choice. To study how features of recorded 
neural population activity related to the mouse’s choices, we fitted a logistic 
regression of the choice (left/right turns) made in each trial to the recorded neural 
activity.

Our readout model explicitly focuses on the part of the choice signal in 
neural population activity that relates to the encoded stimulus information (as 
opposed to the part of the choice signal that is independent of the stimulus 
information). It differs from other quantifications of choice signals (for example, 
choice probability51,52) that use either ‘zero-signal’ trials containing no sensory 
evidence or pooling data across stimulus levels after corrections to remove 
the stimulus modulation, to infer specifically choice signals in neural activity 
beyond stimulus-related modulation. Our model also focuses on how the 
correlation-induced consistency of neural information affects choices, and differs 
from other models10 by focusing only on how the total sensory evidence in neural 
activity influences choices.

Our logistic regression readout model was implemented as follows: For each 
trial, we considered the choice c made by the mouse (c = 1: left; c = −1: right), the 
presented stimulus s (s = 1: left; s = −1: right) and the neural population activity 
for each pair of time points (across-time correlations analysis) or for each pair of 
randomly selected neuronal pools (across-neuron correlations analysis). For each 
session, trial split and pair of time points or neuronal pools, we fitted the logistic 
regression given by equation (9):

logit (p (c = left|x)) = β0 + βss + βŝ ŝ +
βi1
2 (̂s + 1) con +

βi2
2 (̂s − 1) con (9)

where ŝ ( ŝ = 1: left; ŝ = −1: right) represents the stimulus decoded from the 
concatenated activity of two time points or neuronal pools; ‘con’ is a binary variable 
that is equal to 1 if the stimuli decoded individually from each time point or 
neuronal pool are the same, and 0 otherwise; x indicates the combination of neural 
( ŝ, con) and nonneural (s) predictors.

Logistic regression fitting was implemented using the statsmodel Python 
module53. The logistic regression was fit on the testing set using L1-regularized 
maximum likelihood. The regularization hyperparameter (λ) was selected by 
maximizing threefold cross-validated fraction of deviance explained.

For control analyses, we fitted the mouse’s choices with more complex  
choice regressions that included other predictors on top of those described in 
equation (9).

To discern the genuine role of across-time neural consistency (con) in 
explaining the mouse’s choices from that of across-time behavioral consistency 
(conb), we fitted a logistic regression model including additional behavioral 
consistency-dependent predictors according to equation (10):

logit (p (c = left|x)) = β0 + βss + βŝ ŝ +
βi1
2 (̂s + 1) con +

βi2
2 (̂s − 1) con

+
βi3
2 (̂s + 1) conb + βi4

2 (̂s − 1) conb
(10)

We performed this control analysis for three behavioral parameters of interest 
that were measured during the experiments: the lateral running velocity, lateral 
position and view angle of the mouse in the virtual environment (Extended Data 
Fig. 6). Two values of lateral running velocity or lateral position at two different 
time points were defined to be consistent whenever their sign was the same; two 
values of view angle at two different time points were defined to be consistent 
whenever they were both higher or both lower than 90°.

We also fitted mouse’s choices with a more sophisticated logistic regression 
model where the discrete binary variable ŝ in equation (9) was replaced with 
the continuous value of the decoder stimulus posterior probability p(s = left|r). 
Because this model also accounts for the magnitude of stimulus information and 
not only for the identity of the decoded stimulus, we used it to account for possible 
confounders due to differences in overall stimulus information between consistent 
and inconsistent trials (Extended Data Fig. 5).

Predictive performance was quantified as the fraction of deviance explained 
(FDE), evaluated with threefold cross validation. For each fold, we computed the 
log likelihood l of the test data given the values of the β coefficients of the training 
data. To calculate a reference null value for the log likelihood, we computed 
the log likelihood, l0, of the test data given the value of the coefficient β0 of an 
intercept-only regression fit on the training data. The FDE was then defined 
according to equation (11):

FDE = 1 − l/l0 (11)

Estimating the impact of across-time and across-neuron correlations on 
task performance. To estimate the impact of across-time and across-neuron 
correlations on mouse’s task performance, we generated synthetic choices using 
the experimentally fit choice regression of equation (9). As input to the regression, 
we provided predictors extracted from either the real recorded neural data, which 
included across-time and across-neuron correlations, or hypothetical neural data 
whose correlations were disrupted by shuffling. We used this analytical approach 
because current experimental methods cannot remove correlations during task 
performance, and thus we had to estimate effects with post hoc removal of 
correlations.

Task performance, p(c = s), the probability that the choice c matches the 
presented stimulus s, was estimated by computing (using the choice’s logistic 
regression) the probabilities p(x) of all possible combinations of predictors values 
x, multiplying them with the corresponding readout probabilities p(c = s|x) 
obtained from the logistic choice regression, and then summing over x according 
to equation (12):

p (c = s) =

∑

x∈X
p (c = s|x) ∗ p (x) . (12)

The same readout probabilities, p(c = s|x), were used for the computation of 
task performance from both real and shuffled neural data.

We isolated the part of task performance that can be attributed to the 
(correlated or shuffled) neural activity by subtracting from the total estimated 
task performance a baseline nonneural estimated task performance. The latter was 
computed by applying equation (12) after shuffling the values of neural predictors 
across trials, while keeping the relationship between nonneural predictors and 
mouse’s choices fixed.

Computation of readout efficacy of the transformation from stimulus 
information to choice. We termed ‘readout efficacy’ ( p (c = ŝ)) the probability 
that in a given trial the choice c matched the stimulus ŝ decoded by neural activity. 
We computed this probability according to equation (13):

p (c = ŝ) =

∑

x∈X
p (c = ŝ|x) ∗ p (x) , (13)

where x represents the set of all possible combinations of predictors values, and 
p (c = ŝ|x) are obtained from the logistic choice regression.

To generate the readout maps in Fig. 4d,h, we computed, separately for 
consistent and inconsistent trials, readout efficacy as the deviation from the 
average probability of choice being left or right when the presented stimulus is left 
or right, according to equation (14):

Δp (c = ŝ|con) =

∑

x∈X
Δp (c = ŝ|[x, con]) ∗ p (x|con) . (14)

In equation (14), x represents the set of all possible combinations of [s, ŝ] 
predictors values and Δp (c = ŝ|[x, con]) = p (c = ŝ|[s, ŝ, con]) − p (c = ŝ|s).

Matching enhanced-by-consistency and consistency-independent readouts 
in terms of efficacy. To quantify the impact on task performance of the 
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enhanced-by-consistency experimentally measured readout, we compared the 
task performance predicted by the experimentally fit choice regression to the one 
predicted by a consistency-independent choice regression according to equation (15):

logit (p (c = left|x)) = β′

0 + β′

s s + β′

ŝ ŝ. (15)

For a fair comparison, the values of the coefficients β′

0, β′

s and β′

ŝ  were chosen 
so that the two readouts were matched in terms of readout efficacy (equation (13)). 
To compute the values of the coefficient of the consistency-independent choice 
regression in equation (15), we imposed the following conditions according to 
equations (16a–c):















pcons.−indep. (c = −1, ŝ = −1) = penhanced−by−cons. (c = −1, ŝ = −1)

pcons.−indep. (c = 1, ŝ = 1) = penhanced−by−cons. (c = 1, ŝ = 1)

β′

s = βs
(16a–c)

and then plugged equations (9) and (15) into equation (16a,b), and solved for β′

0 
and β′

ŝ .

Shuffling procedure to disrupt across-time or across-neuron noise correlations. 
Across-time correlations between population vectors at different time points 
were removed by shuffling trial identities independently for each of the two 
population vectors within trials with the same stimulus category. With this 
procedure, across-time signal correlations were maintained, while across-time 
noise correlations were disrupted. Single-cell autocorrelations were also disrupted. 
Across-neuron correlations between two neuronal pools were disrupted by 
shuffling trial identities independently for each pool within trials with the same 
stimulus category. With this procedure signal correlations were maintained for all 
pairs of neurons, noise correlations between neurons pairs in two different pools 
were disrupted, and noise correlations of neuron pairs within the same pool were 
maintained. Shuffling was performed separately for the training and the testing set.

Biophysical model of consistency-modulated information transmission. We 
modeled biophysical signal propagation using an integrate-and-fire model neuron 
that receives inputs from a population of neurons exhibiting correlations across 
neurons or time.

Our model consisted of an input population, corresponding to PPC population 
activity in our data, projecting in a feed-forward manner to a single output (or 
‘readout’) neuron. We simulated responses of the input population to two different 
external stimuli (corresponding to the stimulus categories in our data). Stimuli 
s = −1 and s = +1 had the lowest and highest mean rates, respectively. We simulated 
multiple trials for each stimulus. In each simulated trial, the activity of the readout 
neuron was decoded by an optimal linear classifier (readout neuron activity lower 
or higher than the optimal decoding boundary was decoded as stimulus −1 or 
+1, respectively), and the outcome c of the decoding algorithm represented the 
result of the information transmission process through the synapses (which can be 
compared to the behavioral choice in our neural data) in each trial. We modeled 
the readout neuron as an input-driven leaky integrate-and-fire neuron with 
dynamics given by equation (17):

τm
dV
dt

= −V + Vr + w
2

∑

n=1

∑

k

δ
(

t − t(n)k

)

, (17)

where τm represents the membrane time constant of the neuron and Vr is the 
resting value of its membrane potential V. The rightmost term of equation (17) 
describes the external drive to the readout neuron coming from two input units 
(corresponding to two different neural pools). t(n)k  denotes the set of spike times 
of each input unit. For each input spike received by the output unit, the output 
membrane voltage V instantaneously increases by a fixed amount w.

To examine the effect of across-pool correlations (analogous to the 
across-neuron correlations in PPC data) and across-time correlations between the 
two input units on the activity of the output neuron, we generated correlated input 
spike trains t(1)k  and t(2)k  as follows: First, we generated stochastic input firing rates 
for the two pools r(s)1 (t) and r(s)2 (t) with across-pool correlations by modulating 
the amount of shared noise ξC between the two units according to equation (18):

r(s)1 (t;α) = μ(s)
1 + σ Δμ1

(

αξC (t) +
√

1 − α2 ξ1 (t)
)

r(s)2 (t;α) = μ(s)
2 + σ Δμ2

(

αξC (t) +
√

1 − α2 ξ2 (t)
)

,
(18)

where μ(s)
i  is the mean activity of input pool i in response to stimulus s; 

Δμi = μ(s=1)
i − μ(s=−1)

i  is proportional to the derivative of the mean activity with 
respect to the stimulus; and σ equally modulates the variability of the input units. 
The values of ξ1 and ξ2 (private noise) and ξC (shared noise) were independently 
drawn from Gaussian distributions with zero means and unit variance. The 
parameter α, ranging from 0 (fully uncorrelated activity) to 1 (fully correlated 
activity) modulates the amount of shared variability between the two input units. 

Equation (18) generates correlations aligned with the derivative of the mean 
activity with respect to the stimulus Δμ, which are therefore information-limiting7. 
Additionally, equation (18) ensured that varying α changed only the amount of 
across-pool correlation but not the variance of the activity of each individual input 
unit.

We created across-time input correlations by filtering the input activity using a 
low-pass filter with time constant τC given by equation (19):

r(s)i (t;α, τC) =
∞

∫

0
e−(t−u)/τC r(s)i (u;α) du. (19)

We then generated the spike trains of the input units as inhomogeneous 
Poisson processes with firing rates given by r(s)1 (t;α, τC) and r(s)2 (t;α, τC).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The sound localization task data that support the findings of the current study 
can be downloaded at https://gin.g-node.org/MMoroni/PPC_AC_2p_sound_
localization/ (ref. 44).
The evidence accumulation task data that support the findings of the current 
study can be downloaded at https://gin.g-node.org/MMoroni/PPC_2p_evidence_
accumulation/ (ref. 43).

Code availability
The code for the biophysical information transmission model (Fig. 6) is available 
for download at https://github.com/gbondanelli/BiophysicalReadout/.
The code for the encoding and readout model (Figs. 2 and 3) is available for 
download at https://github.com/moni90/encoding_readout_model/.
The code for data analysis is available from the corresponding authors upon 
reasonable request.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Response properties and across-time and across-neuron correlations in PPC during perceptual discrimination tasks for different 
trials categories. Panels a-l refer to PPC data during the sound localization task and across-time correlations. a-c, Accuracy of a linear decoder of the 
stimulus applied to the joint population activity at two different time points, for recorded (black) or trial-shuffled (gray) population vectors, for ‘easy’ 
trials with high level of sensory evidence (a, sound locations further from the midline than 45 deg), ‘difficult’ trials with low level of sensory evidence 
(b, sound locations closer to the midline than 45 deg) and behaviorally correct trials only (c). Errorbars report mean ± SEM across n = 6 sessions and 
all time point pairs within the specified lag range. For all comparisons, P = 10−4, two-sided permutation test. d-f, Distribution of the signal-noise angle γ 
(over n = 6 sessions and all time point pairs within a 2 s lag), for ‘easy’ trials (d), ‘difficult’ trials (e) and behaviorally correct trials only (f). Boxplots show 
the median (line), quartiles (box) and whiskers extend to ±1.5*interquartile range. Red dotted line: theoretical value of the critical angle γC between the 
information-limiting and information-enhancing regime. g-h, Pairwise noise correlations in time-lagged activity, for correct and error trials, for ‘easy’ 
(g) and ‘difficult’ (h) trials. Errorbars report mean ± SEM across n = 6 sessions, all time point pairs within the specified lag range and all cell pairs. For all 
comparisons, P = 10−4, two-sided permutation test. i-j, Population-wise noise correlations in time-lagged activity, for correct and error trials, for ‘easy’ (i) 
and ‘difficult’ (j) trials. Errorbars report mean ± SEM across n = 6 sessions and all time point pairs within the specified lag. In i, P = 0.0380 for Lag 0-1 s, n.s. 
P = 0.1510 for Lag 1-2 s, two-sided permutation test. In j, P = 0.0480 for Lag 0-1 s, P = 0.001 for Lag 1-2 s, two-sided permutation test. k, Relation between 
pairwise and population-wise noise correlations. Each dot represents the average across n = 6 session and all time points with a given lag. The black line 
indicates the linear fit. l, Accuracy of a linear, quadratic and radial basis function SVM decoder of stimulus identity applied to joint population activity 
at two different time points for real recorded population vectors. Errorbars report mean ± SEM across n = 6 sessions and all time point pairs within the 
specified lag range. Panels m-x refer to PPC data during the evidence accumulation task and across-neuron correlations. m-o, Same as in a-c. p-r, Same as 
in d-f. s-t, Same as in g-h. u-v, Same as in i-j. For the evidence accumulation task, ‘easy’ and ‘difficult’ trials were defined as trials with net evidence ≥4 or 
<4 respectively. In panels m-v errorbars report mean ± SEM across n = 11 sessions, Early and Late Delay epochs and 100 pairs of neuronal pools. In m-o, 
for all comparisons, P = 10−4. In s, P = 0.0120. In t, P = 9 × 10−4. In u, P = 0.001. In v, P = 0.8641. For all comparisons, two-sided permutation test. w, Same as 
in k. Each dot represents the average across n = 11 sessions for a given delay epoch. x, Same as in l, with errorbars reporting mean ± SEM across all n = 11 
sessions, Early and Late Delay epochs, and 100 pairs of randomly split neuronal pools.
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Extended Data Fig. 2 | Parameter exploration of the two-pools encoding-readout model and comparison with PPC data. a, Population-wise noise 
correlations ν as a function of the pairwise noise correlations ρ, for different values of the active neurons 2N (N neurons per pool). Here we assumed that 
all neurons were active (M = 2N). For ρ = 0, the population-wise correlation is equal to ν = 1/(2N) b, Population-wise noise correlations ν as a function of 
the average over all pairs of pairwise noise correlations ρ (where · denotes the average over neuron pairs), for different fraction of active neurons 2N/M 
(total number of neurons given by M = 2N + K). By decreasing the fraction of active neurons, the constant of proportionality between ν and ρ increases. 
c, Blue line: critical signal-noise angle γC below which correlations are information-limiting in the model, as a function of the number of neurons per pool 
N, computed using the experimental value of the PPC across-time population-wise correlation for the sound localization task. Red line: critical value γC,BP 
for the angle above which the task performance in correlated data is higher than that in shuffled data. The experimental distribution of PPC signal-noise 
angles is reported for comparison (n = 6 sessions and all time point pairs within a 2 s lag). Horizontal gray line indicates the median. Box edges indicate the 
first and third quartile. d, Same as c for the evidence accumulation task and across-neuron PPC correlations.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Extension of the encoding readout model to multiple features, multiple stimuli per category and multiple categories. a, Left: 
schematic of the encoding readout models with two neural features, two categories, two stimuli per category. Each axis represents the activity of a single 
feature. Colored ellipses: 95% confidence intervals for the simulated neural responses to two different stimuli (s=1, s=-1). Dashed black line: stimulus 
axis. Gray shaded areas: regions of the response space in which stimulus information is encoded consistently across pools and the behavioral readout 
efficacy is enhanced. b, Difference in stimulus classification accuracy between correlated and shuffled responses computed using a linear decoder applied 
to the joint population activity across the two features, as a function of the signal-noise angle γ. c, Difference in task performance between correlated and 
shuffled responses predicted by an enhanced-by-consistency readout of simulated neural activity, as a function of the signal-noise angle γ. In panel b-c, 
the red dashed lines delimit the parameter range where correlations are information-limiting but task performance is enhanced for correlated data. Data 
are mean ± SEM over n = 10 simulations with 50,000 trials each, with d =

√

0.02, ρ = 0.8, σ = 0.2, η = = 0.7. d-f, Same as in a-c, but for an encoding model 
with two neural features, two categories, and multiple (n = 2) stimuli per category. Within each category, stimulus-specific distributions are symmetrically 
displaced on either side of the between-category signal axis. Within each category, the noise axes of the individual distributions are aligned to each other 
and aligned to the vector of differences of mean activity. Data are mean ± SEM over n = 10 simulations with 50,000 trials each. We set half the distance 
between the centers of the distributions of the two categories to d =

√

0.02, and the distance between the centers of the distributions of individual stimuli 
within each category to d2 = 03. In simulations, we set ρ = 0.8, σ = 0.13 (for the distributions of individual stimuli within each category), η = 0.7. g-i, Same 
as in a-c, but for an encoding readout model with two pools and multiple (n = 3) stimulus categories. Mean responses to the three stimulus categories are 
aligned along a unique signal axis, and the noise axes of individual distributions form an angle γ with the stimulus axis. Data are mean ± SEM over n = 10 
simulations with 50,000 trials each, with d =

√

0.02 (distance between the distributions across individual categories), ρ = 0.8, σ = 0.2 (for individual 
distributions), η = 0.7. j-l, Same as in a-c, for a model with three one-dimensional neural features. Neural activity is considered consistent if the same 
stimulus is decoded from all three features. Data are mean ± SEM over n = 10 simulations with 50,000 trials each, with d =

√

0.02, ρ = 0.8, σ = 0.2, 
η = 0.7.
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Extended Data Fig. 4 | Exploration of the parameter space of the encoding readout model. Same as in Fig. 3, for an encoding readout model with 
N = 10 neurons in each pool. a, Difference in the accuracy of a linear decoder of stimulus applied to correlated and shuffled simulated neural activity 
for different values of the signal-noise angle (γ) and population-wise correlations (ν). For all panels, black solid line: boundary between a regime with 
information-limiting correlations and information-enhancing correlations. b, The difference between correlated and shuffled activity in the fraction 
of trials in which the two neural features encode consistent stimulus information is higher in the information-limiting regime and increases with 
population-wise correlations strength. Panels c-e refer to the consistency-independent readout. c-d, Difference in average pairwise correlations (c) and 
population-wise correlations (d) between trials with correct and incorrect predicted task performance for different combinations of model parameters. 
e, Difference in task performance predicted by applying the consistency-independent readout to correlated and shuffled simulated neural activity 
for different combinations of model parameters. For panels c-i, dashed black line: boundary between a regime where task performance is higher for 
correlated responses and a regime where performance is higher for shuffled responses. The overlap between the continuous and dashed black line 
indicates that correlations that limits information are also detrimental for behavior. Panel f-h refer to the enhanced-by-consistency readout (consistency 
modulation index η = 0.85). f-g, Same as in c-d. With the enhanced-by-consistency readout correlations are higher in correct trials. h, Same as in e. The 
area between the dashed and the continuous black line indicates a regime where correlations are information-limiting but task performance is higher for 
correlated responses. Thus, in the parameter range between the two lines, the readout is able overcoming the negative impact of correlations. Dark and 
light gray dots and ellipses: mean values and range between the 25th and the 75th percentile of the signal-noise angles and population-wise correlations 
for PPC data from the sound localization task and evidence accumulation task, respectively. i, Difference in task performance predicted by applying the 
enhanced-by-consistency readout or the consistency-independent readout with matched readout efficacy for different combinations of model parameters. 
The enhanced-by-consistency readout yields increased task performance with respect to the consistency-independent readout. Panels represent the mean 
over n = 100 simulations with 300,000 trials each.
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Extended Data Fig. 5 | The effect of neural correlations on the mouse’s single trial choices cannot be explained by higher stimulus information 
associated to consistent neural representations. a, Schematic example showing response distributions along two neural features (r1, r2) to two stimuli 
(s = −1: blue, s = 1: orange). Black dashed line: optimal decoding boundary of a linear decoder trained on the simulated neural responses. The background 
color represents the linear decoder posterior probability that stimulus s=1 has occurred given the observation of the neural response r = (r1, r2). Intuitively, 
the farther neural response r is from the decoding boundary, the farther p(s = 1|r) is from 0.5, and the more ‘informative’ r is about the stimulus. Note 
that, in the example shown, consistent trials have on average higher posterior probability than inconsistent trials, which might represent a confounder for 
the effect of consistency on mouse’s choices. To control for potential confounders due to differences in the levels of stimulus information between trials 
with consistent and inconsistent stimulus information, we fitted to the data a readout model that predicted choice using the posterior probability of the 
stimulus and posterior probabilities consistency given the neural responses, rather than just the decoded stimulus identity (b, f). We further repeated the 
analyses of Fig. 4 on trials partitioned into those with low (|p (s = 1|r)− 0.5| < 0.16), medium (|p (s = 1|r)− 0.5| > 0.16 ∧ |p (s = 1|r)− 0.5| < 0.32), 
or high (|p (s = 1|r)− 0.5| > 0.32) ‘stimulus information’ (c-e, g-i). Panels b-e refer to PPC data during the sound localization task. b, Performance 
(fraction of deviance explained) in explaining single-trial choice of models using neural predictors based on posterior probabilities. Full model includes all 
predictors values, comprising stimulus posterior probability and posterior probability consistency. No Cons model neglects neural consistency by shuffling 
consistency values across trials. c-e, Left (purple dots). Task performance in trials with correctly decoded stimulus is higher when information is encoded 
consistently than inconsistently. Right (orange dots). The opposite happens for trials with incorrectly decoded stimulus. Thus, stimulus information in 
neural activity has a larger impact on choices when it is encoded consistently across time, even when subsets of trials having approximately the same 
posterior are used. For all comparisons in b-e, P = 10−4, two-sided permutation test. Errorbars represent mean ± SEM across n = 6 sessions and all time 
point pairs within a 1 s lag. Panels f-i refer to PPC data during the evidence accumulation task. f, Same as in b. P = 6 × 10−4, two-sided permutation test g, 
Same as in c. h, Same as in d. i, Same as in j. In panels f-i, consistency and mouse choices are computed from the activity of two pools of neurons. For all 
comparisons in g-i, P = 10−4, two-sided permutation test. In f-i, errorbars represent mean ± SEM across n = 11 sessions, Early and Late Delay epochs and 
100 pairs of neuronal pools. From b-i, the fact that information in neural activity informs choice more effectively when it is consistent cannot be explained 
by differences in overall stimulus information level. Rather, for a given amount of sensory information, more information can be extracted to guide 
behavioral choices if it is distributed redundantly across neurons or across time.
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Extended Data Fig. 6 | The role of neural consistency in the readout of PPC activity is not due to the consistency of measured behavioral parameters. 
Panels a-e refer to PPC neural activity during the sound localization task. To rule out the concern that the impact of across-time consistency of PPC 
activity on the mouse’s choice does not only reflect the effect of running related parameters (whose temporal consistency may correlate with both the 
mouse’s choice and the temporal consistency of neural activity), we developed and fit to PPC data a more sophisticated readout model that explicitly 
includes such contributions in predicting choices. a, The temporal evolution of the decoder posterior probability of left stimulus presentation given the 
recorded PPC population activity is shown along with the corresponding temporal evolution of a selection of three concurrently-measured behavioral 
parameters (lateral position, lateral velocity, view angle), for an example left (orange) and right (blue) cue trial. Colored dots indicate two example time 
point pairs with consistent (t1 − t2, dark purple) or inconsistent (t3-t4, light purple) neural information. Colored dots in the first and third row show that 
neural consistency is not necessarily associated to behavioral consistency (when considering lateral running speed, t1-t2 are behaviorally inconsistent 
while t3 − t4 are behaviorally consistent). b, Schematic representation of the virtual T-maze with corresponding x-y coordinates labelling and mouse’s view 
angle (for a mouse oriented along the y axis). c-e, Performance (fraction of deviance explained) in explaining (using two population vectors at different 
points) single-trial mouse choice of models that use both neural and behavioral consistency (c: lateral position, d: lateral velocity, e: view angle). Full model 
includes all predictors values, comprising neural and behavioral consistency. No Cons model neglects neural consistency by shuffling consistency values 
across trials. c, P = 10−4. d, P = 2 × 10−4. e, P = 10−4, two-sided permutation test. Errorbars report mean ± SEM across n = 6 sessions and all pairs of time 
point within a 1 s lag. Results in c-e show that neural consistency still contributed to predicting choices when we added the consistency of running-related 
variables to the choice regression. This suggests that consistency of the instantaneous PPC population activity across time genuinely influences the 
behavioral readout of the stimulus information, above and beyond what can be predicted about choice from the consistency of measured behavioral 
variables.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Across-time correlations in AC do not benefit task performance as they do in PPC. Panels a-h refer to PPC neural activity during 
the sound localization task. a-h, Summary of the main results of the analysis of across-time correlations in PPC activity (from Fig. 1, Fig. 4 and Fig. 5), 
useful for the comparison with AC data. Panels i-p refer to AC neural activity during the sound localization task. i, Pairwise (left) and population-wise 
(right) noise correlations in time-lagged activity, for correct and error trials. Overall, noise correlations strength is lower in AC than in PPC. j, Distribution of 
the signal-noise angle γ (over n = 6 sessions and all time point pairs within a 2 s lag). Boxplots show the median (line), quartiles (box) and whiskers extend 
to ±1.5*interquartile range. Red dotted line: analytically computed bound between the information-limiting and information-enhancing regime. k, Accuracy 
of a linear decoder of the stimulus applied to joint population activity at two different time points, for real recorded (black) or trial-shuffled (gray) data. 
The decoder accuracy is higher in AC than in PPC (fraction correct: 0.676 ± 0.003 in AC, 0.602 ± 0.001 in PPC, P = 10−4, two-sided permutation test), 
compatible with the view that AC is involved in the encoding of sound information. Across-time correlations limit the encoding of stimulus information 
also in AC, but with a smaller effect than in PPC (average increase in decoder accuracy by shuffling: 0.018 ± 0.001 in AC, 0.026 ± 0.001 in PPC. P = 10−4, 
two-sided permutation test. Equivalent percentage increase of above-chance (that is above 50%) decoding performance: 10.5% in AC, 25.5% in 
PPC). l, Fraction of trials in which stimulus information is encoded consistently across time, for real recorded (black) or trial-shuffled (gray) data. The 
increase in consistency due to across-time correlations is smaller in AC than in PPC (−0.025 ± 0.001 in AC, −0.064 ± 0.01 in PPC, P < 10−4, two-sided 
permutation test). m, Performance (fraction of deviance explained) in explaining single-trial choices of several readout models (see Methods). Full model 
uses all predictors (neural and non-neural). ‘No Cons’ model neglects neural consistency. ‘No Neural’ model neglects stimulus decoded from neural 
activity and neural consistency. A linear SVM is used to decode the stimulus from neural activity. Across-time consistency in AC provides negligible 
improvements in behavioral choice predictions when compared to PPC (increase in fraction of deviance explained when comparing the Full with the ‘No 
Cons’ model: 0.0045 ± 0.0001 in AC, 0.0083 ± 0.0012 in PPC, P = 10−4, two-sided permutation test). n, Best-fit coefficients of the Full readout model. 
AC neural predictors are characterized by low weights. o, Task performance predicted by applying the best-fit readout model to real recorded (black) or 
trial-shuffled (gray) data. Task performance attributable to recorded neurons is much lower in AC than in PPC (~1% in AC, ~3.5% in PPC). Correlations in 
AC activity enhance task performance, but the effect is small. p, Task performance predicted by applying to real recorded population vectors the best-fit 
enhanced-by-consistency (black) and the consistency-independent readout model (green). Task performance attributable to the recorded AC neural 
activity would not be substantially different if the behavioral readout was consistency-independent. In i, k–p, errorbars report mean ± SEM across all 
cell pairs (only b-left) and all time point pairs within the specified lag range or within a 1 s lag from n = 6 sessions. For i, left, P = 10−4 for all comparisons, 
right, P = 0.0016 for lag 0-1 s, P = 0.001 for lag 1–2 s. For k, l, P = 10−4. For m, ***P = 10−4, *P = 0.0324. For o, P = 0.0191. For p, P = 0.0690. All comparisons, 
two-sided permutation test.
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Extended Data Fig. 8 | Exploration of the parameters of the biophysical model for the enhanced-by-consistency readout. a, Normalized coefficient of 
variation (CV) computed for different values of the membrane time constant τm of the readout neuron and EPSP strength w (connection strength from the 
input to the readout neuron). The mean input rate was set to Rin = 6 Hz. The red parameter region corresponds to the region where the standard deviation 
of the readout firing rate increases less than the readout mean firing rate with the value of spatial correlations. b, Contour lines corresponding to the 
parameter values (τm, w) where the normalized CV is equal to 1, for different values of the input firing rate. c, Contour lines for which the normalized CV 
is equal to unity, in the parameter space defined by the membrane time constant τm and the mean EPSP input in a window τm normalized by the voltage 
gap ΔV = Vthreshold − Vr , that is K = wRinτm/ΔV . Regions of parameters on the left of the contour lines correspond to the parameter values where the 
standard deviation of the readout neuron increases less than its mean with spatial correlations. d–f, Same as a-c for temporal correlations.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Encoding model internally generating correlated activity through recurrent dynamics. a, Schematic illustrating the basic setup 
of the encoding recurrent model. Two neurons receive stimulus-dependent feedforward input (which determines the signal correlations) and input 
noise, and are connected through recurrent synapses with strength w. b, Noise correlations are generated through recurrent connectivity, and depend 
on the sign of w (for w = 0 responses are uncorrelated). Top: for positive signal correlations, positive (resp. negative) values of the connectivity generate 
information-limiting (resp. information-enhancing) noise correlations. Bottom: for negative signal correlations, positive (resp. negative) values of the 
connectivity generate information-enhancing (resp. information-limiting) noise correlations. c-f, Average pairwise noise correlation (over n = 10000 
random pairs of neurons) (c), decoding accuracy for correlated and shuffled responses (d), difference in decoding accuracy between correlated and 
shuffled responses for different values of shared noise (e) and average consistency (f) as a function of connectivity strength w. In c,d,f the external input 
noise is uncorrelated across the two neurons. g, Schematic illustrating the 2N-dimensional encoding recurrent model. Two N-dimensional neuronal groups 
with opposite stimulus selectivity receive stimulus-dependent feedforward input and input noise. The connectivity strength is excitatory, sparse and takes 
the value w > 0 between neurons belonging to the same group, and η > 0 between neurons belonging to different groups. h, Example of a connectivity 
matrix adopted in these analyses. All matrix entries are positive (excitatory synapses) and sparse with connection probability p. i-l Same quantities 
computed in c-f as a function of the difference between the within-group connectivity and between-groups connectivity strength, w − η. We set N = 50, 
p = 0.5, η = 0.5. In c-f, i-l data are presented as mean ± SEM over n = 50 simulations.
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Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Calcium imaging data were acquired using ScanImage from Vidrio Technologies (versions 3 and 5), and the virtual reality environments were 

designed and controlled using ViRMEn

Data analysis All analyses were performed in Matlab  (R2019b) and Python 3.6 used custom software developed by our labs. For logistic regression, a  

toolbox was used (statsmodel, cited in reference list as ref 53 ). For SVM analysis, a toolbox was used (LIBSVM, cited in reference list as ref 

49). 

Code availability: The code for the biophysical readout model (Fig. 6) is available for download at: https://github.com/gbondanelli/

BiophysicalReadout. 

The code for the encoding and readout model is available for download at: https://github.com/moni90/encoding_readout_model 

The code for data analysis is available from the corresponding authors upon reasonable request.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

The sound localization task data that support the findings of the current study can be downloaded at https://gin.g-node.org/MMoroni/
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PPC_AC_2p_sound_localization (doi 10.12751/g-node.tqbad8). 

The evidence accumulation task data that support the findings of the current study can be downloaded at https://gin.g-node.org/MMoroni/

PPC_2p_evidence_accumulation. (doi 10.12751/g-node.g1xyem).

Field-specific reporting
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size All data collected that met the inclusion criteria were included in the results.

Data exclusions All data exclusions are described in the Methods section, and were determined  in the previous publications describing the two datasets used 

here (Runyan et al Nature 2017; Morcos and Harvey Nature Neuroscience 2016).  

Sound localization dataset: one of the seven PPC and one of the seven AC recording sessions used in our previous published work was 

excluded due to the large unbalance of left/right stimuli that were presented to the mouse across trials in that session, which would result in 

too few trials available for our analyses.  

Evidence accumulation dataset: we did not use trials with zero net evidence (<10% trials in 2/11 sessions).

Replication The major results of the paper were present in each individual dataset.

Randomization There are no applicable 'experimental groups' in this study.

Blinding There are no applicable 'experimental groups' in this study to blind. All data were collected, processed, and assessed for quality prior to 

analysis.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Dataset 1 (Runyan et al Nature 2017): Imaging data were acquired from five male C57BL/6J mice (The Jackson Laboratory), aged 6-8 

weeks at the initiation of behavioral task training. Imaging began 4-6 weeks after viral injection and continued for 4-12 weeks. 

Dataset 2 (Morcos and Harvey Nature Neuroscience 2016): Imaging data were acquired from five male C57BL/6J mice (The Jackson 

Laboratory), aged 8–10 weeks at the initiation of behavioral task training. Imaging began at least 4 weeks after viral injection and was 

continued for up to 12 weeks.

Wild animals The study did not involve wild animals.

Field-collected samples This study did not involve samples collected from the field.

Ethics oversight All experimental procedures were approved by the Harvard Medical School Institutional Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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