
Insights on representational similarity in neural
networks with canonical correlation

Ari S. Morcos∗‡
DeepMind†

arimorcos@gmail.com

Maithra Raghu∗‡
Google Brain, Cornell University

maithrar@gmail.com

Samy Bengio
Google Brain

bengio@google.com

Abstract

Comparing different neural network representations and determining how repre-
sentations evolve over time remain challenging open questions in our understand-
ing of the function of neural networks. Comparing representations in neural net-
works is fundamentally difficult as the structure of representations varies greatly,
even across groups of networks trained on identical tasks, and over the course
of training. Here, we develop projection weighted CCA (Canonical Correlation
Analysis) as a tool for understanding neural networks, building off of SVCCA,
a recently proposed method [22]. We first improve the core method, showing
how to differentiate between signal and noise, and then apply this technique to
compare across a group of CNNs, demonstrating that networks which general-
ize converge to more similar representations than networks which memorize, that
wider networks converge to more similar solutions than narrow networks, and that
trained networks with identical topology but different learning rates converge to
distinct clusters with diverse representations. We also investigate the representa-
tional dynamics of RNNs, across both training and sequential timesteps, finding
that RNNs converge in a bottom-up pattern over the course of training and that
the hidden state is highly variable over the course of a sequence, even when ac-
counting for linear transforms. Together, these results provide new insights into
the function of CNNs and RNNs, and demonstrate the utility of using CCA to
understand representations.

1 Introduction

As neural networks have become more powerful, an increasing number of studies have sought to de-
cipher their internal representations [26, 16, 4, 2, 11, 25, 21]. Most of these have focused on the role
of individual units in the computations performed by individual networks. Comparing population
representations across networks has proven especially difficult, largely because networks converge
to apparently distinct solutions in which it is difficult to find one-to-one mappings of units [16].

Recently, [22] applied Canonical Correlation Analysis (CCA) as a tool to compare representations
across networks. CCA had previously been used for tasks such as computing the similarity between
modeled and measured brain activity [23], and training multi-lingual word embeddings in language
models [5]. Because CCA is invariant to linear transforms, it is capable of finding shared structure
across representations which are superficially dissimilar, making CCA an ideal tool for comparing
the representations across groups of networks and for comparing representations across time in
RNNs.

Using CCA to investigate the representations of neural networks, we make three main contributions:
∗equal contribution, in alphabetical order
†Work done while at DeepMind; currently at Facebook AI Research (FAIR)
‡To whom correspondence should be addressed: arimorcos@gmail.com, maithrar@gmail.com

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

ar
X

iv
:1

80
6.

05
75

9v
3

 [
st

at
.M

L
]

 2
3

O
ct

 2
01

8

1. We analyse the technique introduced in [22], and identify a key challenge: the method
does not effectively distinguish between the signal and the noise in the representation. We
address this via a better aggregation technique (Section 2.2).

2. Building off of [21], we demonstrate that groups of networks which generalize converge to
more similar solutions than those which memorize (Section 3.1), that wider networks con-
verge to more similar solutions than narrower networks (Section 3.2), and that networks
with identical topology but distinct learning rates converge to a small set of diverse solu-
tions (Section 3.3).

3. Using CCA to analyze RNN representations over training, we find that, as with CNNs [22],
RNNs exhibit bottom-up convergence (Section 4.1). Across sequence timesteps, however,
we find that RNN representations vary significantly (Section A.3).

2 Canonical Correlation Analysis on Neural Network Representations

Canonical Correlation Analysis [10], is a statistical technique for relating two sets of observations
arising from an underlying process. It identifies the ’best’ (maximizing correlation) linear rela-
tionships (under mutual orthogonality and norm constraints) between two sets of multidimensional
variates.

Concretely, in our setting, the underlying process is a neural network being trained on some task.
The multidimensional variates are neuron activation vectors over some dataset X . As in [22], a
neuron activation vector denotes the outputs a single neuron z has on X . If X = {x1, ..., xm}, then
the neuron z outputs scalars z(x1), ..., z(xm), which can be stacked to form a vector.4

A single neuron activation vector is one multidimensional variate, and a layer of neurons gives us
a set of multidimensional variates. In particular, we can consider two layers, L1, L2 of a neural
network as two sets of observations, to which we can then apply CCA, to determine the similarity
between two layers. Crucially, this similarity measure is invariant to (invertible) affine transforms
of either layer, which makes it especially apt for neural networks, where the representation at each
layer typically goes through an affine transform before later use. Most importantly, it also enables
comparisons between different neural networks,5 which is not naively possible due to a lack of any
kind of neuron to neuron alignment.

2.1 Mathematical Details of Canonical Correlation

Here we overview the formal mathematical interpretation of CCA, as well as the optimization prob-
lem to compute it. Let L1, L2 be a × n and b × n dimensional matrices respectively, with L1 rep-
resenting a multidimensional variates, and L2 representing b multidimensional variates. We wish to
find vectors w, s in Ra,Rb respectively, such that the dot product

ρ =
〈wTL1, s

TL2〉
||wTL1|| · ||sTL2||

is maximized. Assuming the variates in L1, L2 are centered, and letting ΣL1,L1
denote the a by a

covariance of L1, ΣL2,L2
denote the b by b covariance of L2, and ΣL1,L2

the cross covariance:

〈wTL1, s
TL2〉

||wTL1|| · ||sTL2||
=

wT ΣL1,L2
s√

wT ΣL1,L1
w
√
sT ΣL2,L2

s

We can change basis, to w = Σ
−1/2
L1,L1

u and s = Σ
−1/2
L2,L2

v to get

wT ΣL1,L2
s√

wT ΣL1,L1w
√
sT ΣL2,L2s

=
uT Σ

−1/2
L1,L1

ΣL1,L2
Σ
−1/2
L2,L2

v
√
uTu
√
vT v

(*)

which can be solved with a singular value decomposition:

Σ
−1/2
L1,L1

ΣL1,L2Σ
−1/2
L2,L2

= UΛV

4This is different than the vector of all neuron outputs on a single input: z1(x1), ..., zN (x1), which is also
sometimes referred to as an activation vector.

5Including those with different topologies such that L1 and L2 have different sizes.

2

a

0 250 500 750 1000 1250 1500 1750 2000
Sorted Index

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n
Co

ef
fic

ie
nt

CIFAR-10 Correlation Coefficients Through Time
 Performance Convergence: Step 45000

Step
0
20000
40000
60000
79999

b

0 200 400 600 800 1000 1200
Sorted Index

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n
Co

ef
fic

ie
nt

PTB Correlation Coefficients Through Time
 Performance Convergence: Epoch 250

Epoch
1
101
201
301
401
500

c

0 200 400 600 800 1000 1200
Sorted Index

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n
Co

ef
fic

ie
nt

WikiText-2 Correlation Coefficients Through Time
 Performance Convergence: Epoch 350

Epoch
1
151
301
451
601
750

d

0 10000 20000 30000 40000 50000 60000 70000 80000
Epoch Number

0.0

0.2

0.4

0.6

0.8

CC
A

Di
st

an
ce

CIFAR-10 Stable and Unstable Parts
 of Representation

Stable
Unstable

e

100 200 300 400 500
Epoch Number

0.0

0.2

0.4

0.6

0.8

CC
A

Di
st

an
ce

PTB Stable and Unstable Parts of Representation
Stable
Unstable

f

100 200 300 400 500 600 700
Epoch Number

0.0

0.2

0.4

0.6

0.8

CC
A

Di
st

an
ce

WikiText-2 Stable and Unstable Parts
 of Representation

Stable
Unstable

Figure 1: CCA distinguishes between stable and unstable parts of the representation over the course of
training. Sorted CCA coefficients (ρ(i)t) comparing representations between layer L at times t through training
with its representation at the final timestep T for CNNs trained on CIFAR-10 (a), and RNNs trained on PTB (b)
and WikiText-2 (c). For all of these networks, at time t0 < T (indicated in title), the performance converges to
match final performance (see Figure A1). However, many ρ(i)t are unconverged, corresponding to unnecessary
parts of the representation (noise). To distinguish between the signal and noise portions of the representation,
we apply CCA between L at timestep tearly early in training, and L at timestep T/2 to get ρT/2. We take
the 100 top converged vectors (according to ρT/2) to form S, and the 100 least converged vectors to form B.
We then compute CCA similarity between S and L at time t > tearly , and similarly for B. S remains stable
through training (signal), while B rapidly becomes uncorrelated (d-f). Note that the sudden spike at T/2 in the
unstable representation is because it is chosen to be the least correlated with step T/2.

with u, v in (*) being the first left and right singular vectors, and the top singular value of Λ corre-
sponding to the canonical correlation coefficient ρ ∈ [0, 1], which tells us how well correlated the
vectors wTL1 = uT Σ

−1/2
L1,L1

L1 and sTL2 = vT Σ
−1/2
L2,L2

L2 (both vectors in Rn) are.

In fact, u, v, ρ are really the first in a series, and can be denoted u(1), v(1), ρ(1). Next in the series are
u(2), v(2), the second left and right singular vectors, and ρ(2) the corresponding second highest sin-
gular value of Λ. ρ(2) denotes the correlation between (u(2))T Σ

−1/2
L1,L1

L1 and (v(2))T Σ
−1/2
L2,L2

L2,
which is the next highest possible correlation under the constraint that 〈u(1), u(2)〉 = 0 and
〈v(1), v(2)〉 = 0.

The output of CCA is a series of singular vectors u(i), v(i) which are pairwise orthogonal, their
corresponding vectors in Rn: (u(i))T Σ

−1/2
L1,L1

L1 and (v(i))T Σ
−1/2
L2,L2

L2, and finally their correlation
coefficient ρ(i) ∈ [0, 1], with ρ(i) ≤ ρ(j), i > j. Letting c = min(a, b), we end up with c non-zero
ρ(i).

Note that the orthogonality of u(i), u(j) also results in the orthogonality of
(u(i))T Σ

−1/2
L1,L1

L1, (u
(j))T Σ

−1/2
L1,L1

L1, as
〈(u(i))T Σ

−1/2
L1,L1

L1, (u
(j))T Σ

−1/2
L1,L1

L1〉 = (u(i))T Σ
−1/2
L1,L1

L1L
T
1 Σ
−1/2
L1,L1

(u(j)) = (u(i))T (u(j)) = 0 (**)

and so our CCA directions are also orthogonal.

2.2 Beyond Mean CCA Similarity

To determine the representational similarity between two layers L1, L2, [22] prunes neurons with
a preprocessing SVD step, and then applies CCA to L1, L2. They then represent the similar-
ity of L1, L2 by the mean correlation coefficient. Adapting this to make a distance measure,
dSV CCA(L1, L2):

dSV CCA(L1, L2) = 1− 1

c

c∑
i=1

ρ(i)

One drawback with this measure is that it implicitly assumes that all c CCA vectors are equally
important to the representations at layer L1. However, there has been ample evidence that DNNs do

3

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Signal Dimension to Noise

0.0

0.2

0.4

0.6

0.8

1.0

CC
A

Di
st

an
ce

Mean, PWCCA, SVCCA Comparison
Mean
PWCCA
SVCCA

Figure 2: Projection weighted (PWCCA) vs. SVCCA vs. unweighted mean Unweighted mean (blue) and
projection weighted mean (red) were used to compare synthetic ground truth signal and uncommon (noise)
structure, each of fixed dimensionality. As the signal to noise ratio decreases, the unweighted mean under-
estimates the shared structure, while the projection weighted mean remains largely robust. SVCCA performs
better than the unweighted mean but less well than the projection weighting.

not rely on the full dimensionality of a layer to represent high performance solutions [12, 6, 1, 20,
15, 21, 14]. As a result, the mean correlation coefficient will typically underestimate the degree of
similarity.

To investigate this further, we first asked whether, over the course of training, all CCA vectors
converge to their final representations before the network’s performance converges. To test this, we
computed the CCA similarity between layer L at times t throughout training with layer L at the
final timestep T . Viewing the sorted CCA coefficients ρ, we can see that many of the coefficients
continue to change well after the network’s performance has converged (Figure 1a-c, Figure A1).
This result suggests that the unconverged coefficients and their corresponding vectors may represent
“noise” which is unnecessary for high network performance.

We next asked whether the CCA vectors which stabilize early in training remain stable. To test
this, we computed the CCA vectors between layer L at timestep tearly in training and timestep T/2.
We then computed the similarity between the top 100 vectors (those which stabilized early) and
the bottom 100 vectors (those which had not stabilized) with the representation at all other training
times. Consistent with our intuition, we found that those vectors which stabilized early remained
stable, while the unstable vectors continued to vary, and therefore likely represent noise.

These results suggest that task-critical representations are learned by midway through training, while
the noise only approaches its final value towards the end. We therefore suggest a simple and easy to
compute variation that takes this into account. We also discuss an alternate approach in Section A.2.

Projection Weighting One way to address this issue is to replace the mean by a weighted mean,
in which canonical correlations which are more important to the underlying representation have
higher weight. We propose a simple method, projection weighting, to determine these weights. We
base our proposition on the hypothesis that CCA vectors that account for (loosely speaking) a larger
proportion of the original outputs are likely to be more important to the underlying representation.

More formally, let layer L1, have neuron activation vectors [z1, ..., za], and CCA vectors hi =

(u(i))T Σ
−1/2
L1,L1

L1. We know from (**) that hi, hj are orthogonal. Because computing CCA can
result in the accrual of small numerical errors [24], we first explicitly orthonormalize h1, ..., hc via
Gram-Schmidt. We then identify how much of the original output is accounted for by each hi:

α̃i =
∑
j

|〈hi, zj〉|

Normalizing this to get weights αi, with
∑

i αi = 1, we can compute the projection weighted CCA
distance6:

d(L1, L2) = 1−
c∑

i=1

αiρ
(i)

As a simple test of the benefits of projection weighting, we constructed a toy case in which we used
CCA to compare the representations of two networks with common (signal) and uncommon (noise)

6We note that this is technically a pseudo-distance rather than a distance as it is non-symmetric.

4

Figure 3: Generalizing networks converge to more similar solutions than memorizing networks. Groups
of 5 networks were trained on CIFAR-10 with either true labels (generalizing) or a fixed random permutation
of the labels (memorizing). The pairwise CCA distance was then compared within each group and between
generalizing and memorizing networks (inter) for each layer, based on the training data, and the projection
weighted CCA coefficient (with thresholding to remove low variance noise.) While both categories converged
to similar solutions in early layers, likely reflecting convergent edge detectors, etc., generalizing networks
converge to significantly more similar solutions in later layers. At the softmax, sets of both generalizing and
memorizing networks converged to nearly identical solutions, as all networks achieved near-zero training loss.
Error bars represent mean ± std weighted mean CCA distance across pairwise comparisons.

structure, each of a fixed dimensionality. We then used the naive mean and projected weighted
mean to measure the CCA distance between these two networks as a function of the ratio of signal
dimensions to noise dimensions. As expected we found that while the naive mean was extremely
sensitive to this ratio, the projection weighted mean was largely robust (Figure 2).

3 Using CCA to measure the similarity of converged solutions

Because CCA measures the distance between two representations independent of linear transforms,
it enables formerly difficult comparisons between the representations of different networks. Here,
we use this property of CCA to evaluate whether groups of networks trained on CIFAR-10 with
different random initializations converge to similar solutions under the following conditions:

• When trained on identically randomized labels (as in [27]) or on the true labels (Section
3.1)

• As network width is varied (Section 3.2)
• In a large sweep of 200 networks (Section 3.3)

3.1 Generalizing networks converge to more similar solutions than memorizing networks

It has recently been observed that DNNs are capable of solving image classification tasks even when
the labels have been randomly permuted [27]. Such networks must, by definition, memorize the
training data, and therefore cannot generalize beyond the training set. However, the representational
properties which distinguish networks which memorize from those which generalize remain unclear.

In particular, we hypothesize that the representational similarity in a group of generalizing networks
(networks trained on the true labels) should differ from the representational similarity of memorizing
networks (networks trained on random labels.)

To test this hypothesis, we trained groups of five networks with identical topology on either unmod-
ified CIFAR-10 or CIFAR-10 with random labels (the same set of random labels was used for all
networks), all of which were trained to near-zero training loss7. Critically, the randomization of
CIFAR-10 labels was consistent for all networks. To evaluate the similarity of converged solutions,
we then measured the pairwise projection weighted CCA distance for each layer among networks
trained on unmodified CIFAR-10 (“Generalizing”), among networks trained on randomized label
CIFAR-10 (“Memorizing”) and between each pair of networks trained on unmodified and random

7Details of the architectures and training procedures for this and following experiments can be found in
Appendix A.4.

5

a b

Figure 4: Larger networks converge to more similar solutions. Groups of 5 networks with different random
initializations were trained on CIFAR-10. Pairwise CCA distance was computed for members of each group.
Groups of larger networks converged to more similar solutions than groups of smaller networks (a). Test
accuracy was highly correlated with degree of convergent similarity, as measured by CCA distance (b).

label CIFAR-10 (“Inter”). For all analyses, the representation in a given layer was obtained by
averaging across all spatial locations within each filter.

Remarkably, we found that not only do generalizing networks converge to more similar solutions
than memorizing networks (to be expected, since generalizing networks are more constrained), but
memorizing networks are as similar to each other as they are to a generalizing network. This result
suggests that the solutions found by memorizing networks were as diverse as those found across
entirely different dataset labellings.

We also found that at early layers, all networks converged to equally similar solutions, regardless of
whether they generalize or memorize (Figure 3). Intuitively, this makes sense as the feature detectors
found in early layers of CNNs are likely required regardless of the dataset labelling. In contrast,
however, at later layers, groups of generalizing networks converged to substantially more similar
solutions than groups of memorizing networks (Figure 3). Even among networks which generalize,
the CCA distance between solutions found in later layers was well above zero, suggesting that the
solutions found were quite diverse. At the softmax layer, sets of both generalizing and memorizing
networks converged to highly similar solutions when CCA distance was computed based on training
data; when test data was used, however, only generalizing networks converged to similar softmax
outputs (Figure A10), again reflecting that each memorizing network memorizes the training data
using a different strategy.

Importantly, because each network learned a different linear transform of a similar solution, tradi-
tional distance metrics, such as cosine or Euclidean distance, were insufficient to reveal this differ-
ence (Figure A5). Additionally, while unweighted CCA revealed the same broad pattern, it does not
reveal that generalizing networks get more similar in the final two layers (Figure A9).

3.2 Wider networks converge to more similar solutions

In the model compression literature, it has been repeatedly noted that while networks are robust
to the removal of a large fraction of their parameters (in some cases, as many as 90%), networks
initialized and trained from the start with fewer parameters converge to poorer solutions than those
derived from pruning a large networks [8, 9, 6, 1, 20, 15]. Recently, [7] proposed the “lottery ticket
hypothesis,” which hypothesizes that larger networks are more likely to converge to good solutions
because they are more likely to contain a sub-network with a “lucky” initialization. If this were true,
we might expect that groups of larger networks are more likely to contain the same “lottery ticket”
sub-network and are therefore more likely to converge to similar solutions than smaller networks.

To test this intuition, we trained groups of convolutional networks with increasing numbers of filters
at each layer. We then used projection weighted CCA to measure the pairwise similarity between
each group of networks of the same size. Consistent with our intuition, we found that larger networks
converged to much more similar solutions than smaller networks (Figure 4a).8 This is also consistent
with the equivalence of deep networks to Gaussian processes (GPs) in the limit of infinite width

8To control for variability in CCA distance due to comparisons across representations of different sizes, a
random subset of 128 filters from the final layer were used for all network comparisons. This bias should, if

6

a b

Figure 5: CCA reveals clusters of converged solutions across networks with different random initial-
izations and learning rates. 200 networks with identical topology and varying learning rates were trained on
CIFAR-10. CCA distance between the eighth layer of each pair of networks was computed, revealing five dis-
tinct subgroups of networks (a). These five subgroups align almost perfectly with the subgroups discovered in
[21] (b; colors correspond to bars in a), despite the fact that the clusters in [21] were generated using robustness
to cumulative ablation, an entirely separate metric.

[13, 17]. If each unit in a layer corresponds to a draw from a GP, then as the number of units
increases the CCA distance will go to zero.

Interestingly, we also found that networks which converged to more similar solutions also achieved
noticeably higher test accuracy. In fact, we found that across pairs of networks, the correlation
between test accuracy and the pairwise CCA distance was -0.96 (Figure 4b), suggesting that the
CCA distance between groups of identical networks with different random initializations (computed
using the train data) may serve as a strong predictor of test accuracy. It may therefore enable
accurate prediction of test performance without requiring the use of a validation set.

3.3 Across many initializations and learning rates, networks converge to discriminable
clusters of solutions

Here, we ask whether networks trained on the same data with different initializations and learning
rates converge to the same solutions. To test this, we measured the pairwise CCA distance between
networks trained on unmodified CIFAR-10. Interestingly, when we plotted the pairwise distance
matrix (Figure 5a), we observed a block diagonal structure consistent with five clusters of converged
network solutions, with one cluster highly dissimilar to the other four clusters. Despite the fact that
these networks all achieved similar train loss (and many reached similar test accuracy as well), these
clusters corresponded with the learning rate used to train each network. This result suggests that
there exist multiple minima in the optimization landscape to which networks may converge which
are largely specified by the optimization parameters.

In [21], the authors also observed clusters of network solutions using the relationship between net-
works’ robustness to cumulative deletion or “ablation” of filters and generalization error. To test
whether the same clusters are found via these distinct approaches, we assigned a color to each clus-
ter found using CCA (see bars on left and top in Figure 5a), and used these colors to identify the
same networks in a plot of ablation robustness vs. generalization error (Figure 5b). Surprisingly, the
clusters found using CCA aligned nearly perfectly with those observed using ablation robustness.

This result suggests not only that networks with different learning rates converge to distinct clusters
of solutions, but also that these clusters can be uncovered independently using multiple methods,
each of which measures a different property of the learned solution. Moreover, analyzing these net-
works using traditional metrics, such as generalization error, would obscure the differences between
many of these networks.

anything, lead to an overestimate of the distance between groups of larger networks, as they are more heavily
subsampled.

7

a

0 100 200 300 400 500
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

CC
A

Di
st

an
ce

PTB Learning Dynamics b

0 200 400 600
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7WikiText-2 Learning Dynamics
Layer

1
2
3

c

0 200 400 600
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6
WikiText-2 Deeper LSTM

Layer
1
2
3
4
5

d

0 200 400 600
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

WikiText-2 Unweighted Mean

Figure 6: RNNs exhibit bottom-up learning dynamics. To test whether layers converge to their final rep-
resentation over the course of training with a particular structure, we compared each layer’s representation
over the course of training to its final representation using CCA. In shallow RNNs trained on PTB (a), and
WikiText-2 (b), we observed a clear bottom-up convergence pattern, in which early layers converge to their
final representation before later layers. In deeper RNNs trained on WikiText-2, we observed a similar pattern
(c). Importantly, the weighted mean reveals this effect much more accurately than the unweighted mean, which
is also supported by control experiments (Figure A8) (d), revealing the importance of appropriate weighting of
CCA coefficients.

4 CCA on Recurrent Neural Networks

So far, CCA has been used to study feedforward networks. We now use CCA to investigate RNNs.
Our RNNs are LSTMs used for the Penn Treebank (PTB) and WikiText-2 (WT2) language mod-
elling tasks, following the implementation in [18, 19].

One specific question we explore is whether the learning dynamics of RNNs mirror the “bottom
up” convergence observed in the feedforward case in [22], as well as investigating whether CCA
produces qualitatively better outputs than other metrics. However, in the case of RNNs, there are two
possible notions of “time”. There is the training timestep, which affects the values of the weights,
but also a ‘sequence timestep’ – the number of tokens of the sequence that have been fed into the
recurrent net. This latter notion of time does not explicitly change the weights, but results in updated
values of the cell state and hidden state of the network, which of course affect the representations of
the network.

In this work, we primarily focus on the training notion of time; however, we perform a preliminary
investigation of the sequence notion of time as well, demonstrating that CCA is capable of find-
ing similarity across sequence timesteps which are missed by traditional metrics (Figures A2, A4),
but also that even CCA often fails to find similarity in the hidden state across sequence timesteps,
suggesting that representations over sequence timesteps are often not linearly similar (Figure A3).

4.1 Learning Dynamics Through Training Time

To measure the convergence of representations through training time, we computed the projection
weighted mean CCA value for each layer’s representation throughout training to its final representa-
tion. We observed bottom-up convergence in both Penn Treebank and WikiText-2 (Figure 6a-b). We
repeated these experiments with cosine and Euclidean distance (Figure A8), finding that while these
other metrics also reveal a bottom up convergence, the results with CCA highlight this phenomena
much more clearly.

We also observed bottom-up convergence in a deeper LSTM trained on WikiText-2 (the larger
dataset) (Figure 6c). Interestingly, we found that this result changes noticeably if we use the un-
weighted mean CCA instead, demonstrating the importance of the weighting scheme (Figure 6d).

5 Discussion and future work

In this study, we developed CCA as a tool to gain insights on many representational properties of
deep neural networks. We found that the representations in hidden layers of a neural network contain
both “signal” components, which are stable over training and correspond to performance curves,
and an unstable “noise” component. Using this insight, we proposed projection weighted CCA,
adapting [22]. Leveraging the ability of CCA to compare across different networks, we investigated
the properties of converged solutions of convolutional neural networks (Section 3), finding that

8

networks which generalize converge to more similar solutions than those which memorize (Section
3.1), that wider networks converge to more similar solutions than narrow networks (Section 3.2),
and that across otherwise identical networks with different random initializations and learning rates,
networks converge to diverse clusters of solutions (Section 3.3). We also used projection weighted
CCA to study the dynamics (both across training time and sequence steps) of RNNs, (Section 4),
finding that RNNs exhibit bottom-up convergence over the course of training (Section 4.1), and that
across sequence timesteps, RNN representations vary nonlinearly (Section A.3).

One interesting direction for future work is to examine what is unique about directions which are
preserved across networks trained with different initializations. Previous work has demonstrated
that these directions are sufficient for the network computation [22], but the properties that make
these directions special remain unknown. Furthermore, the attributes which specifically distinguish
the diverse solutions found in Figure 5 remain unclear. We also observed that networks which
converge to similar solutions exhibit higher generalization performance (Figure 4b). In future work,
it would be interesting to explore whether this insight could be used as a regularizer to improve
network performance. Additionally, it would be useful to explore whether this result is consistent in
RNNs as well as CNNs. Another interesting direction would be to investigate which aspects of the
representation present in RNNs is stable over time and which aspects vary. Additionally, in previous
work [22], it was observed that fixing layers in CNNs over the course of training led to better test
performance (“freeze training”). An interesting open question would be to investigate whether a
similar training protocol could be adapted for RNNs.

Acknowledgments

We would like to thank Jascha Sohl-Dickstein for critical feedback on the manuscript, and Jason
Yosinski, Jon Kleinberg, Martin Wattenberg, Neil Rabinowitz, Justin Gilmer, and Avraham Ruder-
man for helpful discussion.

References

[1] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional
neural networks. J. Emerg. Technol. Comput. Syst., 13(3):32:1–32:18, February 2017.

[2] Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio,
Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, and Si-
mon Lacoste-Julien. A closer look at memorization in deep networks. In Proceedings of the
34th International Conference on Machine Learning (ICML’17), June 2017.

[3] Maurice S. Bartlett. The statistical significance of canonical correlations. In Biometrika, vol-
ume 32, pages 29 – 37, 1941.

[4] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dis-
section: Quantifying interpretability of deep visual representations. In Computer Vision and
Pattern Recognition, 2017.

[5] Manaal Faruqui and Chris Dyer. Improving vector space word representations using multilin-
gual correlation. In Association for Computational Linguistics, 2014.

[6] Mikhail Figurnov, Aizhan Ibraimova, Dmitry P Vetrov, and Pushmeet Kohli. PerforatedCNNs:
Acceleration through elimination of redundant convolutions. In D D Lee, M Sugiyama, U V
Luxburg, I Guyon, and R Garnett, editors, Advances in Neural Information Processing Systems
29, pages 947–955. Curran Associates, Inc., 2016.

[7] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Training pruned neural
networks. CoRR, abs/1803.03635, 2018.

[8] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. In Proceedings of the 4th
International Conference on Learning Representations (ICLR’16), October 2015.

[9] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections
for efficient neural networks. CoRR, abs/1506.02626, 2015.

[10] Harold Hotelling. Relations between two sets of variates. In Biometrika, volume 28, pages
321–337, 1936.

9

[11] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding recurrent
networks. International Conference on Learning Representations Workshop, abs/1506.02078,
2016.

[12] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In D S Touretzky, editor,
Advances in Neural Information Processing Systems 2, pages 598–605. Morgan-Kaufmann,
1990.

[13] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and
Jascha Sohl-Dickstein. Deep neural networks as gaussian processes. In International Confer-
ence on Learning Representations (ICLR’17), 2018.

[14] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic
dimension of objective landscapes. In International Conference on Learning Representations,
April 2018.

[15] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters
for efficient ConvNets. In International Conference on Learning Representations (ICLR’17),
pages 1–10, 2017.

[16] Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent learning:
Do different neural networks learn the same representations? In Feature Extraction: Modern
Questions and Challenges, pages 196–212, 2015.

[17] AGDG Matthews, J Hron, M Rowland, RE Turner, and Z Ghahramani. Gaussian process
behaviour in wide deep neural networks. In International Conference on Learning Represen-
tations (ICLR’18), 2018.

[18] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and Optimizing
LSTM Language Models. arXiv preprint arXiv:1708.02182, 2017.

[19] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. An Analysis of Neural Language
Modeling at Multiple Scales. arXiv preprint arXiv:1803.08240, 2018.

[20] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolu-
tional neural networks for resource efficient inference. In International Conference on Learn-
ing Representations (ICLR’17), November 2016.

[21] Ari S. Morcos, David G.T. Barrett, Neil C. Rabinowitz, and Matthew Botvinick. On the im-
portance of single directions for generalization. In International Conference on Learning Rep-
resentations (ICLR’18), 2018.

[22] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular
vector canonical correlation analysis for deep learning dynamics and interpretability. In Ad-
vances in Neural Information Processing Systems, 2017.

[23] David Sussillo, Mark M Churchland, Matthew T Kaufman, and Krishna V Shenoy. A neural
network that finds a naturalistic solution for the production of muscle activity. Nature neuro-
science, 18(7):1025–1033, 2015.

[24] Viivi Uurtio, João M. Monteiro, Jaz Kandola, John Shawe-Taylor, Delmiro Fernandez-Reyes,
and Juho Rousu. A tutorial on canonical correlation methods. ACM Comput. Surv., 50(6):95:1–
95:33, November 2017.

[25] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Understanding
neural networks through deep visualization. In Deep Learning Workshop, International Con-
ference on Machine Learning (ICML), 2015.

[26] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pages 818–833. Springer, 2014.

[27] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-
ing deep learning requires rethinking generalization. International Conference on Learning
Representations (ICLR’16), abs/1611.03530, 2016.

10

A Appendix

A.1 Performance Plots for Models

We include the train/test curves for models trained in Figure 1. Comparing the curves to Figure 1,
we can see that for all the models, there is a train time t0 where performance is almost equivalent
to final performance, but most CCA coefficients ρ(i) still haven’t converged. This suggests that the
vectors associated with these ρ(i) are noise in the representation, which is not necessary for doing
well at the task.

a

0 10000 20000 30000 40000 50000 60000 70000 80000
Step

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CIFAR-10 Resnet Performance

train acc
test acc

b

0 100 200 300 400 500
Epoch Number

50

100

150

200

250

300

Pe
rp

le
xi

ty

PTB Test Perplexity c

0 100 200 300 400 500 600 700
Epoch Number

100

200

300

400

500

600

Pe
rp

le
xi

ty

WikiText-2 Test Perplexity

Figure A1: Performance convergence for CIFAR-10 CNNs, and PTB and WikiText-2 RNNs.

A.2 Additional reduction methods for CCA

Bartlett’s Test Another potential method to reduce across CCA vectors of varying importnace is
to estimate the number of important CCA vectors k, and perform an average over this. A statistical
hypothesis test, proposed by Bartlett [3], and known as Bartlett’s test, attempts to identify the number
of statistically significant canonical correlations. Key to the test is the computation of Bartlett’s
statistic:

Tk = −

(
n− k − 1

2
(a+ b+ 1) +

k∑
i=1

1

(ρ(i))2

)
log

(
c∏

i=k+1

(1− (ρ(i))2

)

where, in the same notation as previously, n is the number of datapoints, and a, b are the number
of neurons in L1, L2, with c = min(a, b). The null hypothesis H0 is that there are k statistically
significant canonical correlations with the remaining ρ(i) are generated randomly via a normal dis-
tribution [3]. Under the null, the distribution of Tk becomes chi-squared with (a−k)(b−k) degrees
of freedom. We can then compute the value of Tk and determine if H0 satisfactorily explains the
data.

However, the iterative nature of this metric makes it expensive to compute. We therefore focus on
projection weighting in this work, and leave further exploration of Bartlett’s test for a future study.

A.3 Representation Dynamics in RNNs Through Sequence (Time) Steps

Here, we investigate the utility of CCA for analyzing representations of RNNs unrolled across se-
quence time steps. As a toy example of CCA’s benefit in this case, we first initialize a linear vanilla
RNN with a unitary recurrent matrix (such that it simply rotates the hidden representation on each
timestep). We then use cosine distance, Euclidean distance, and CCA to compare the hidden rep-
resentation at each timestep to the representation at the final timestep (Figure A2a-c). While both
cosine and Euclidean distance fail to realize the similarity between timesteps, CCA, because of its
invariance to linear transforms, immediately recognizes that the representations at all timesteps are
linearly equivalent.

However, as linear networks are limited in their representational capabilities, we next examine a toy
case of a network involving both a linear and non-linear component. We again initialize a simple
RNN with the following update rule:

ht+1 = Wrotht + α · σ(Wrandht) + b

11

a b
Linear

c

d e
Blended linear/nonlinear

f

Figure A2: Toy RNN examples demonstrating that CCA is comparatively rotation invariant. In a toy
example, vanilla RNNs were initialized with a random rotation matrix and run 1000 times with a random
starting hidden state and no inputs. Hidden states at each timepoint were compared to the final hidden state
using cosine distance (a, d), Euclidean distance (b, e), and CCA (c, f). Due to its rotation invariance, CCA
recognized all states as similar in both linear RNNs (a-c), and a blended linear/non-linear case (d-f; ht+1 =
Wrotht+α ·σ(Wrandht)+b, whereWrot is a random rotation matrix,Wrand ∼ N (0, I)), while both cosine
and Euclidean distance largely fail. Error bars represent mean ± std.

where ht is the hidden state at time t, σ represents the sigmoid nonlinearity, Wrot is a random
rotation matrix, Wrand ∼ N (0, I)), and α is a scale factor between the linear and non-linear com-
ponents. For values of α as high as 100 (suggesting that the nonlinear component has 100 times the
magnitude of the linear component), we again find that, in contrast to CCA, cosine and Euclidean
distance fail to recognize the similarity between timesteps (Figure A2d-f).

However, both of the above cases are toy examples. We next analyze the application of CCA to the
more realistic situation of LSTM networks trained on PTB and WikiText-2. To do this, we unroll
the RNN for 20 sequence steps, and collect the activations of each neuron in the hidden state over
the appropriate sequence tokens for each of the 20 timesteps. More precisely, we can represent our
output by a matrix O with dimensions (N,m) where N is the number of neurons and m is the total
sequence length. Our per sequence step matrices would then be O0, ..., O19, with Oj consisting of
all the outputs corresponding to sequence tokens with index equal to j modulo 20, and our matrix
would have dimensions (N,m/20). We can then compareOj toO19 analogous with the comparison
to the final timestep. We then apply CCA, Cosine and Euclidean distance as above. To our surprise,
the hidden state varies significantly from sequence timestep to sequence timestep, Figure A4.

0 2 4 6 8 10 12 14 16 18
Sequence Step

0.0

0.2

0.4

0.6

0.8

Di
st

an
ce

CCA Distance

0 2 4 6 8 10 12 14 16 18
Sequence Step

0.0

0.2

0.4

0.6

0.8

Cosine Distance

Layer
0
1
2

0 2 4 6 8 10 12 14 16 18
Sequence Step

0.0

0.5

1.0

Euclidean Distance

Figure A3: Hidden states are nonlinearly variable over sequence timesteps. Using CCA (left), cosine dis-
tance (middle), and Euclidean distance (right), we measured the distance between representations at sequence
timestep t and the final sequence timestep T . Interestingly, even CCA failed to find similarity until late in the
sequence, suggesting that the hidden state varies nonlinearly in the presence of unique inputs.

The above result demonstrates that the hidden state varies nonlinearly in the presence of unique
inputs. However, this nonlinearity could be caused by the recurrent dynamics or novel inputs. To
disambiguate these two cases, we asked how the hidden state changes when the same input is re-

12

peated. We therefore repeat the same input for 20 timesteps, beginning the repetition after some
percentage of previous steps containing unique inputs (e.g., 1%, 10%, ... through the m input se-
quence tokens). When the repeating inputs were presented early in the sequence, CCA recognized
that the hidden state was highly similar, while cosine and Euclidean distance remained insensitive
to this similarity (Figure A4, light blue lines). This result appears to suggest that the recurrent
dynamics are approximately linear in nature.

However, when the same set of repeating inputs was presented late in the sequence (Figure A4, dark
blue lines), we found that the CCA distance increased markedly, suggesting that the nonlinearity of
the recurrent dynamics depends not only on the (fixed) recurrent matrix, but also on the sequence
history of the network.

0 2 4 6 8 10 12 14 16 18
Sequence Step

0.0

0.2

0.4

0.6

0.8

Di
st

an
ce

CCA Distance

0 2 4 6 8 10 12 14 16 18
Sequence Step

0.0

0.2

0.4

0.6

0.8

1.0
Cosine Distance

0 2 4 6 8 10 12 14 16 18
Sequence Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Euclidean Distance

Repeat Start 1%
Repeat Start 8%
Repeat Start 24%
Repeat Start 48%
Repeat Start 81%
No Repeat

Figure A4: Hidden states vary linearly in the presence of repeated inputs. To test whether the nonlinearity
in the hidden state over sequence timesteps was due to input variability or recurrent dynamics, we measured
the CCA distance (left), cosine distance (middle), and Euclidean distance (right) between sequence timestep
t and the final sequence timestep T in the presence of repeating inputs. Interestingly, we found that when
the repetition started after only a small set of unique inputs have been presented (light blue lines), CCA was
able to recognize that the hidden states at each sequence timestep were highly similar. However, after many
unique inputs had been delivered, the CCA distance markedly increased, suggesting that the nonlinearity of the
recurrent dynamics is dependent on the network’s history.

A.4 Experimental details

CIFAR-10 ConvNet Architecture: The convolutional networks trained on CIFAR-10 were iden-
tical to those used in [21]. All CIFAR-10 networks were trained for 100 epochs using the Adam op-
timizer with default parameters, unless otherwise specified (learning rate: 0.001, beta1: 0.9, beta2:
0.999). Default layer sizes were: 64, 64, 128, 128, 128, 256, 256, 256, 512, 512, 512, with strides
of 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, respectively. All kernels were 3x3 and a batch size of 32. Batch
normalization layers were present after each convolutional layer. For the experiments in Section 3.2,
all layers were scaled equally by a constant factor ∈ 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 3.0,
4.0, 5.0, 6.0, 7.0.

RNN Experiments: RNN experiments on PTB and WikiText2 followed the experimental setup
in [18] and [19]. In particular, we used the open sourced model code9 for training the word level
Penn TreeBank and WikiText-2 LSTM models, (without finetuning or continuous cache pointer
augmentation). All hyperparameters were left unmodified, so experiments can be reproduced by
training LSTM models using the command to run main.py, and then applying CCA to the hidden
states, via the open source implementation10.

Toy Experiments: Generate k vectors in R2000 of ‘signal’ (iid standard normal), for k ∈
20, 50, 70, 80, 100, 120, 140, 160, 180, 199 and concatenate this Rk×2000 matrix with a noise ma-
trix: R(200−k)×2000 ∼ N (0, 0.1) to. (Note that the noise being lower magnitude than the signal
is something that we see in typical neural networks – work on network compression has showing
that pruning low magnitude weights is an effective compression strategy.) Putting together gives
matrix X , 200 (neurons) by 2000 (datapoints). Apply a randomly sampled orthonormal transform
to the k by 2000 subset of X to get a new k by 2000 matrix, and again add iid noise of dimensions

9https://github.com/salesforce/awd-lstm-lm
10https://github.com/google/svcca/

13

(200 − k) by 2000 to get matrix Y . Apply CCA based methods to detect similarity between X,Y .
Of particular interest are cases k << 200 (low dim. signal in noise).

A.5 Additional control experiments

Figure A5: Cosine and Euclidean distance do not reveal the difference in converged solutions between
groups of generalizing and memorizing networks. Groups of 5 networks were trained on CIFAR-10 with
either true labels (generalizing) or random labels (memorizing). The pairwise cosine (left) and eucldean (right)
distance was then compared among generalizing networks, memorizing networks, and between generalizing
and memorizing networks (inter) for each layer. While its invariance to linear transforms enabled CCA distance
to reveal a difference between groups generalizing and memorizing networks in later layers (Figure 3), cosine
and Euclidean distance fail to detect this difference. Error bars represent mean ± std distance across pairwise
comparisons.

Figure A6: Cosine and Euclidean distance do not reveal the relationship between network size and sim-
ilarity of converged solutions. Groups of 5 networks with different random initializations were trained on
CIFAR-10. Each group contained filter sizes of λ[64, 64, 128, 128, 128, 256, 256, 256, 512, 512, 512] with
λ ∈ {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}. Pairwise cosine (left) and Euclidean
(right) distance was computed for each group of networks. While CCA distance revealed that larger networks
converge to more similar solutions (Figure 4), cosine and Euclidean distance fail to find this relationship. Error
bars represent mean ± std distance across pairwise comparisons.

14

Figure A7: Relationship between network size and similarity of converged solutions is not
present at initialization. Activations at initialization (random weights) and after training (learned
weights) were extracted from groups of 5 networks with different random initializations from CIFAR-10
data. Each group contained filter sizes of λ[64, 64, 128, 128, 128, 256, 256, 256, 512, 512, 512] with λ ∈
{0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}. While CCA distance decreases substantially
for trained networks (from approximately 0.47 to 0.28), CCA distance only decreased moderately (from ap-
proximately 0.67 to 0.63) and plateaued past approximately 1000 filters. Error bars represent mean ± std
distance across pairwise comparisons.

15

a

0 100 200 300 400 500
Epoch Number

0.0

0.2

0.4

0.6

0.8

Co
sin

e
Di

st
an

ce

PTB Learning Dynamics Cosine Distance
Layer

1
2
3

b

0 100 200 300 400 500
Epoch Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Eu
cli

de
an

 D
ist

an
ce

PTB Learning Dynamics Euclidean Distance
Layer

1
2
3

c

0 100 200 300 400 500 600 700
Epoch Number

0.0

0.2

0.4

0.6

0.8

Co
sin

e
Di

st
an

ce

WikiText-2 Learning Dynamics Cosine Distance
Layer

1
2
3

d

0 100 200 300 400 500 600 700
Epoch Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Eu
cli

de
an

 D
ist

an
ce

WikiText-2 Euclidean Distance
Layer

1
2
3

e

0 100 200 300 400 500 600 700
Epoch Number

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Di

st
an

ce

WikiText-2 Cosine Distance Deeper LSTM
Layer

1
2
3
4
5

f

0 100 200 300 400 500 600 700
Epoch Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Eu
cli

de
an

 D
ist

an
ce

WikiText-2 Euclidean Distance Deeper LSTM
Layer

layer 1
layer 2
layer 3
layer 4
layer 5

Figure A8: Controls for RNN learning dynamics with cosine and Euclidean distance To test whether layers
converge to their final representation over the course of training with a particular structure, we compared each
layer’s representation over the course of training to its final representation using cosine (a, c, e) and Euclidean
distance (b, d, f). In shallow RNNs trained on PTB (a-b), and WikiText-2 (c-d), both cosine and Euclidean
distance display properties of bottom-up convergence, albeit with substantially more noise than CCA (6). In
deeper RNNs trained on WikiText-2, we observed a similar pattern (e-f).

16

a b

Figure A9: Unweighted CCA and SVCCA also finds that generalizing networks converge to more similar
solutions than memorizing networks, but misses several key features. While weighted CCA (Figure 3),
unweighted CCA (a), and SVCCA (b) reveal the same broad pattern across generalizing and memorizing
networks, unweighted CCA and SVCCA miss several key features. First, unweighted CCA misses the fact that
generalizing networks become more similar to one another in the final two layers. Second, both unweighted
CCA and SVCCA overestimate the distance between networks in early layers. Error bars represent mean± std
unweighted mean CCA and unweighted mean SVCCA distance across pairwise comparisons.

Figure A10: On test data, generalizing networks converge to similar solutions at the softmax, but memo-
rizing networks do not. Groups of 5 networks were trained on CIFAR-10 with either true labels (generalizing)
or random labels (memorizing). The pairwise CCA distance was then compared within each group and be-
tween generalizing and memorizing networks (inter) for each layer, based on the test data. At the softmax, sets
of generalizing networks converged to similar (though not identical) solutions, but memorizing networks did
not, reflecting the diverse strategies used by memorizing networks to memorize the training data. Error bars
represent mean ± std weighted mean CCA distance across pairwise comparisons.

17

	1 Introduction
	2 Canonical Correlation Analysis on Neural Network Representations
	2.1 Mathematical Details of Canonical Correlation
	2.2 Beyond Mean CCA Similarity

	3 Using CCA to measure the similarity of converged solutions
	3.1 Generalizing networks converge to more similar solutions than memorizing networks
	3.2 Wider networks converge to more similar solutions
	3.3 Across many initializations and learning rates, networks converge to discriminable clusters of solutions

	4 CCA on Recurrent Neural Networks
	4.1 Learning Dynamics Through Training Time

	5 Discussion and future work
	A Appendix
	A.1 Performance Plots for Models
	A.2 Additional reduction methods for CCA
	A.3 Representation Dynamics in RNNs Through Sequence (Time) Steps
	A.4 Experimental details
	A.5 Additional control experiments

