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Abstract
Decision‑making requires flexibility to rapidly switch sensorimotor associations depending on 

behavioral goals stored in memory. We identified cortical areas and neural activity patterns that mediate 
this flexibility during virtual‑navigation, where mice switched navigation toward or away from a visual 
cue depending on its match to a remembered cue. An optogenetics screen identified V1, posterior 
parietal cortex (PPC), and retrosplenial cortex (RSC) as necessary for accurate decisions. Calcium imaging 
revealed neurons that can mediate rapid sensorimotor switching by encoding a conjunction of a current 
and remembered visual cue that predicted the mouse’s navigational choice from trial‑to‑trial. Their 
activity formed efficient population codes before correct, but not incorrect, choices. These neurons were 
distributed across posterior cortex, even V1, but were densest in RSC and sparsest in PPC. We propose the 
flexibility of navigation decisions arises from neurons that mix visual and memory information within a 
visual‑parietal‑retrosplenial network, centered in RSC.

Introduction
As animals navigate for survival, they combine sensory information with internally stored behavioral 

goals to select a desirable route and rapidly switch routes as their behavioral goals change. Such navigation 
arises from a rich repertoire of sensorimotor associations that has expanded through evolution1. In 
reflexive behaviors, a given sensory input always leads to a stereotyped action. Animals have acquired the 
ability to rapidly switch sensorimotor associations by responding to the same stimulus with distinct actions 
depending on their current behavioral goal. We refer to this ability as the flexibility of decision‑making. In 
many laboratory decision‑making paradigms, however, animals are trained to make one action in response 
to a given sensory cue and to make the opposite action in response to an alternate cue, which involves 
fixed sensorimotor associations but not flexible decisions. In contrast, in flexible decision‑making, animals 
switch their associations between a given sensory cue and a desirable action from moment to moment, 
such as responding to the same sensory cue with one action at one moment and with the opposite action at 
the next moment as their behavioral goal changes. In general, this flexible action selection can be achieved 
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by combining external sensory information with internal information about one’s behavioral goal, which 
often manifests as short‑term memory. A critical feature of this flexibility is its rapidity to switch actions 
when behavioral goals or sensory cues change from one moment to the next. This rapidity sets flexible 
decision‑making apart from the learning or re‑learning of different sensorimotor associations over longer 
timescales. Together, these characteristics imply that specific neural mechanisms exist for rapid flexibility 
over times as short as seconds, which are too brief for substantial neural circuit plasticity. Here, we aimed 
to reveal the cortical areas and neural activity patterns that are central to flexible decisions during spatial 
navigation by understanding how behavioral goals stored in short‑term memory influence navigational 
action selection in response to sensory cues.

The flexibility of decision‑making has been investigated in experimental paradigms that do not involve 
spatial navigation. Across studies using different tasks, diverse areas have been found to mix memory 
and sensory information for flexible decisions, including higher sensory cortices, association cortices, 
and premotor cortices2‑11. Other studies have assessed slow changes in sensorimotor associations over 
many behavioral trials or sessions, which might rely on mechanisms distinct from those underlying rapid, 
moment‑to‑moment flexibility12‑15. Recently, several studies have identified cortical and subcortical areas 
that have a causal role in flexible decisions3,4,11,14,15. However, in many cases, a limitation has been that 
studies have focused on one or two areas of interest without systematic screening across multiple areas to 
compare their causal involvement and neural coding properties. Thus, these studies have not distinguished 
whether flexible decisions involve different areas depending on the specific features of the task or are 
mediated by a widely distributed network. Furthermore, it is unclear whether these areas are involved in 
flexible decisions during navigation.

 
In contrast, many studies of navigation have focused on the encoding of current spatial variables, 

such as location and heading in place cells, grid cells, and head direction cells16. Beyond well‑established 
spatial coding in hippocampus and entorhinal cortex, retrosplenial cortex (RSC) and posterior parietal 
cortex (PPC) represent heading direction, running velocity, and navigational routes with world‑centered 
(allocentric) and self‑centered (egocentric) reference frames17‑30. In addition, spatial signals have been 
found even in primary and secondary visual cortices31,32. Typically, however, these studies of navigation 
have not investigated the mechanisms of decision‑making in which animals must choose a navigational 
path among alternatives.

 
Recent approaches have been developed to bridge navigation and decision‑making. These approaches 

have revealed that sequences of neural activity in PPC correlate with upcoming choices33 and short‑term 
memories of previous cues, including during evidence accumulation34‑37. Similar choice‑related sequential 
activity is also observed in RSC37,38. These approaches have used behavioral tasks with a fixed sensorimotor 
association needed for reward. For example, they employed a task in which cue A instructs turn left and 
cue B instructs turn right33‑35,38‑40. Thus, these studies have not investigated the flexibility of decision‑making 
during navigation in which animals switch sensorimotor associations depending on information stored in 
short‑term memory.
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Therefore, it remains unclear which areas may be most critical for the flexibility of decision‑making 
during navigation. A leading candidate is PPC because of its established role in navigation decision 
tasks33‑35,41. Another candidate is RSC due to its function in spatial memory and coding of navigation and 
decision‑related variables17,24,25,38,42‑44. Alternatively, flexible navigation decisions may arise from frontal 
regions of cortex that have been shown to be necessary for flexibility in tasks not involving navigation3,14. In 
addition, at the level of neural computation, it is an open question how memory signals are incorporated 
into the circuits important for navigation to mediate rapid switches in sensorimotor associations.

Here, we studied the flexibility of decision‑making during navigation by designing a delayed 
match‑to‑sample task in virtual reality and systematically screening the contributions of a wide range of 
cortical areas using optogenetics and cellular‑resolution calcium imaging. We demonstrate that neural 
activity in posterior cortex is necessary for flexible navigation decisions, whereas frontal parts of cortex are 
surprisingly less critical. We discovered neurons that mix short‑term memory and visual information, and 
these neurons were present in most parts of posterior cortex, even in V1. Surprisingly, RSC had the highest 
density of these neurons, whereas these cells were sparsest in PPC, with a near absence in anterior PPC. 
These neurons formed an efficient population code, which appeared to be critical for accurate decisions 
because their activity was more informative when the mouse made correct decisions compared to errors. 
Our results suggest a mechanism contributing to flexible navigation decisions based on mixed visual and 
memory representations within a distributed visual‑parietal‑retrosplenial network, centered in RSC. 

Results
A task that requires combining short‑term memory and sensory information to make flexible navigation 
decisions

We developed a delayed match‑to‑sample task for mice, based on navigation in a virtual reality T‑maze 
(Fig. 1a). A black (B) or white (W) sample cue was presented on the walls at the start of the T‑stem, followed 
by a delay segment in which the identity of the sample cue had to be stored in memory for a short period 
(1.21 ± 0.65 s, mean ± s.d., n = 17 mice). The delay segment duration was similar to or longer than delays 
used in other delayed match‑to‑sample tasks, including for human and non‑human primates5,6,8,45,46. Next, 
when the mouse reached a defined spatial position, a test cue appeared instantaneously in one of two 
configurations: black walls on the left and white walls on the right (BW) or vice versa (WB). To receive a 
reward, the mouse turned toward the T‑arm with the wall color that matched the sample cue (Fig. 1b). 
The two sample cues and two test cues defined four trial types (Fig. 1a‑b, the example maze shows a B/
WB trial). Importantly, in the test segment, the mouse combined its memory of the sample cue with 
the sensory information of the test cue to choose an appropriate action (left or right turn). This process 
involves flexible navigation decisions in the sense that the mouse made different choices (left or right 
turns) for the identical test cue depending on the short‑term memory of the sample cue. This task is thus 
different from tasks with fixed sensorimotor associations in which mice select the same behavioral action 
for a given sensory cue. Furthermore, the flexibility in this task was rapid and required mice to combine 
their short‑term memory of the sample cue with the visual signals from the test cue differently from trial 
to trial. The mice performed the task with high accuracy after 2–4 months of training (90.5 ± 5.5% correct, 
mean ± s.d., n = 17 mice, Supplementary Fig. 1).
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Fig. 1 | Optogenetics screen for cortical areas involved in a flexible navigation task
(a) Schematic of experimental setup and delayed match‑to‑sample task. 
(b) Reward direction on each of the four trial types defined by a combination of the sample cue and test cue. 
(c) Heading angle (top) and lateral position (bottom) of a mouse in VR for four trial types shown as dashed lines and colored as in 

panel (b). 
(d) Lateral running velocity of a mouse on the treadmill in two example sessions for four trial types colored as in panel (b). Shading 

indicates mean ± s.d. for correct trials. Prior to the test cue onset, trials with the black or white sample cue are colored by dark 
red and light blue, respectively. Arrow in the bottom panel indicates a position in the delay segment where the velocity differed 
between trials with the black and white sample cue.

(e) Logistic regression to explain the mouse’s choice based on the sample cue identity vs. running patterns. Beta coefficients from 
a single session are shown as an open symbol, with different shapes indicating sessions from different mice. Filled symbols with 
error bars indicate mean ± s.e.m. for each mouse. n = 35 sessions from 4 mice. The data only include sessions in which calcium 
imaging data were acquired from posterior brain areas (V1, RSC, MM, A).

(f) Schematic of optogenetic inhibition experiments. Bilateral light was delivered randomly to one of 28 pairs of target sites and 
interleaved with control trials (no laser). 

(g) Task performance with inhibition throughout the trial for each cortical location (bilateral inhibition). The location of inhibition 
sites are overlaid on the cortical areal map based on the Allen Mouse CCF. The average performance in control trials (93.5 ± 2.8%, 
mean ± s.d.) is indicated by an arrowhead on the color bar. n = 212 ± 10 trials/site, 265 sessions, and 7 mice. 

(h) Change in task performance with inhibition in all segments (throughout the trial) relative to control trials. The change was 
computed from the data in panel (g) and averaged across sites in each brain area, as marked in panel (l). Error bars indicate 
mean ± s.e.m. The performance significantly decreased with the inhibition in all areas (p < 10 ‑4; bootstrap, compared to zero). The 
effect of inhibition in V1, RSC, and PPC were larger than those for M1/M2 or S1 (p < 10‑4, bootstrap). The significance threshold 
was adjusted by Bonferroni correction with 𝛼 = 0.05 to account for 5 area‑wise comparisons for panels (h‑k) and 10 between‑area 
comparisons.

(i) Similar to panels (g‑h), except with inhibition during the sample segment. n = 141 ± 8 trials/site, 253 sessions, and 4 mice in panels 
(i‑k). The performance significantly decreased with the inhibition in V1 (p < 10‑4), RSC (p < 10‑4), PPC (p = 0.002), M1/M2 (p < 10‑4), 
but not in S1 (p = 0.16) (bootstrap, compared to zero).

(j) Similar to panels (g‑h), except with inhibition during the delay segment. The performance significantly decreased with the inhibition 
in V1 (p < 10‑4), RSC (p = 0.0009), PPC (p < 10‑4), but not in M1/M2 (p = 0.25), and S1 (p = 0.026) (bootstrap, compared to zero).

(k) Similar to panels (g‑h), except with inhibition during the test segment. The performance significantly decreased with the inhibition 
in V1, RSC, PPC, and M1/M2 (p < 10‑4), but not in S1: p = 0.083 (bootstrap, compared to zero).

(l) Colored symbols indicate grouping of inhibition sites based on cortical areas.
(m) Similar to panels (h‑k), except with expanded inhibition of RSC by six sites marked as orange circles in panel (l) in all or specific 

segments. The performance significantly decreased with the inhibition in all segments (p < 10‑4, n = 154 trials, 38 sessions, 4 mice), 
sample segment (p < 10‑4 , n = 148 trials, 37 sessions, 3 mice), delay segment (p < 10‑4, n = 153 trials, 37 sessions, 3 mice), and test 
segment: (p < 10‑4, n = 139 trials, 35 sessions, 3 mice) (bootstrap, compared to zero).

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.10.487349doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.10.487349
http://creativecommons.org/licenses/by-nc-nd/4.0/


Along the T‑stem during trials with the same cues, the mouse observed the identical visual scene on 
every trial. This was enforced by fixing the heading angle and lateral position of the mouse in the virtual 
T‑stem (Fig. 1c). Thus, the mouse only moved forward and backward in the virtual maze and followed 
identical trajectories in the T‑stem across trials. Specifically, throughout the T‑stem of the maze, our virtual 
reality software did not translate the mouse’s lateral running velocity on the treadmill into movement in 
the virtual maze, and only did so at the T‑intersection and T‑arms.

The running velocities of mice on the treadmill indicated their running patterns for right and left 
choices diverged soon after the onset of the test cue (Supplementary Fig. 1i). Based on decoding of choice 
direction from these running patterns, we estimated that the relevant decision‑making process that 
combined visual and memory signals to inform choices happened within the first one second of the test 
segment (Supplementary Fig. 1i‑j). Also, it appeared that the mouse used short‑term memory to remember 
the sample cue, instead of using only a behavioral mnemonic, for several reasons. First, the mouse was 
unable to use heading angle and lateral position to remember the sample cue because these parameters 
were fixed and identical across all trials during the delay segment, as mentioned above (Fig. 1c). Second, 
although in some sessions mice had distinct running patterns on the treadmill for different sample cues 
during the delay segment (arrow in Fig. 1d bottom), these running patterns were variable across trials, and 
the mouse’s choice on a trial was better explained by the presented sample cue than the running patterns 
during the delay (Fig. 1e). Third, the running patterns in the delay segment did not strongly correlate with 
task performance in individual mice, and sample cue‑related running in the delay segment was absent 
in some sessions with high performance (Supplementary Fig. 1k). Together, the running patterns suggest 
that the mice made decisions at the beginning of the test segment using both short‑term memory of the 
sample cue and visual information of the test cue. 

This task involves multiple neural processes, including for flexible decision‑making, short‑term 
memory, and sensory perception, and each part of the task is critical for accurate behavioral performance. 
We thus analyzed all parts of the task, but because our goal is to study flexible decision‑making during 
navigation, we focused mostly on the test segment in which decision‑making occurred as mice combined 
a memory of the sample cue with the sensory information of the test cue. 

An optogenetics screen for cortical areas involved in a flexible navigation decision task
We screened for cortical locations with activity necessary for successful performance of the task. In 

VGAT‑ChR2 mice, blue laser light was delivered transcranially to activate inhibitory interneurons and silence 
neighboring excitatory neurons (up to ~1 mm radius with 2‑5 mW per site, Supplementary Fig. 2a‑i)47,48. On 
a given trial, bilateral inhibition sites were chosen randomly from a grid of locations with 1 mm spacing. 
Inhibition trials were interleaved with control trials (Fig. 1f). With inhibition in all segments throughout 
a trial, the strongest impairment of task performance occurred when the inhibition site was chosen in 
primary and secondary visual areas, PPC, and RSC (Fig. 1g‑h). In contrast, the effects on task performance 
were markedly smaller when the inhibition site was chosen in dorsal‑anterior cortex, including motor and 
premotor areas, and somatosensory areas (Fig. 1g‑h). Statistics and p‑values for these and subsequent 
results are reported in the figure legends. Our inhibition results indicate that the posterior parts of cortex 
are prominently involved in performing the task, compared to the anterior parts of the dorsal cortex.
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To understand the aspects of the task that required each area’s activity, we restricted inhibition to 
either the sample segment, delay segment, or test segment on each trial. For V1, RSC, and PPC, the largest 
effects on performance occurred with inhibition during the test segment (Fig. 1i‑k, p < 0.01, bootstrap test). 
In contrast, modest effects on performance occurred with inhibition of these areas during the sample and 
delay segments. Because none of the silenced areas appeared especially critical during the delay segment, 
the short‑term memory might be maintained in a distributed cortical network, in uninhibited parts of the 
brain, including ventral cortex or subcortical areas, or in a format other than neural spiking49‑51. Instead, 
the prominent involvement of these areas in the test segment suggests they are candidates for combining 
memory and visual signals to inform choice directions during flexible navigation decisions. 

Because our approach inhibited only relatively small cortical volumes, the effects may have been 
less pronounced in large areas, such as RSC52,53. We therefore expanded our inhibition in RSC to three 
bilateral pairs of inhibition sites (orange circles in Fig. 1l). This expanded inhibition decreased the mouse’s 
performance to near chance levels when RSC was inhibited throughout the trial (55.8 ± 4.0% correct; 
mean ± s.e.m.) and resulted in a more substantial decrease in performance compared to the smaller 
inhibition sites (Fig. 1m). While the expanded RSC inhibition had the largest effect in the test segment, 
performance was also substantially decreased by inhibition in the sample segment, implying a possible 
role of RSC in encoding the sample cue identity on each trial. These pronounced inhibition effects with the 
expanded RSC inhibition suggest that RSC is essential for accurate performance in the flexible navigation 
decision task.

The inhibition of cortical sites did not induce apparent motor deficits in mice. Compared to control 
trials, the average running speed of mice varied only modestly across inhibition conditions (3.1 ± 11.0% 
increase; mean ± s.d.; Supplementary Fig. 2j‑o). Therefore, the decrease in performance is unlikely the 
result of running difficulty or memory loss due to a prolonged delay with reduced running speed. Together, 
our results reveal that a visual‑parietal‑retrosplenial network is critical for the task and highlight V1, PPC, 
and RSC as candidates for mixing memory and visual information for flexible decisions. 

Neural activity represents essential task variables in a visual‑parietal‑retrosplenial network
To understand the functional roles of these areas in the task, we used two‑photon calcium imaging 

to monitor layer 2/3 neurons in V1, RSC (dysgranular region), and PPC (Fig. 2a). We divided PPC into a 
medial region (area MM: mediomedial) and an anterior region (area A: anterior) because our previous 
work and anatomical studies suggest divisions may exist in this part of posterior cortex54‑57. Each imaged 
area had activity throughout the full trial with transient peaks associated with the onset of the sample cue 
and test cue, except for area A, which had a peak as the mouse turned into a T‑arm (Fig. 2c). Individual 
neurons in each area had transient activity, and different cells were active at different time points, forming 
a sequence of activity that spanned the full trial (Fig. 2d). Many cells therefore contained activity selective 
for particular maze positions, and thus at any time point, only a small fraction of the population was active.

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.10.487349doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.10.487349
http://creativecommons.org/licenses/by-nc-nd/4.0/


To gain initial insights into how cells could contribute to flexible decision‑making, we looked for neural 
activity that nonlinearly combines the memory of the sample cue and the visual information of the test 
cue. This nonlinear combination indicates the reward direction on a given trial and can be interpreted as 
the logical exclusive OR (XOR) operation on the sample cue and test cue identities (Fig. 2b, top). The XOR 
takes on two values: one for the trial types B/BW and W/WB for which the reward is on the left, and a 
second value for the trial types B/WB and W/BW for which the reward is on the right. The reward direction 
and mouse’s choice were identical on correct trials and opposite on errors trials (Fig. 2b). 

We performed an initial inspection of the activity in individual cells using deconvolved calcium 
fluorescence timeseries and found cells that appeared to encode key task variables. Some cells were active 
on the two trial types with the same sample cue (Fig. 2e), and others were active on the two trial types with 
the same test cue (Fig. 2f), suggesting selectivity for the sample cue and test cue, respectively. However, 
these cells did not directly represent the XOR of the two cues to inform the reward direction. Other cells 
appeared to be choice selective with activity only when the mouse turned to a specific direction (left 
or right) regardless of the trial type (Fig. 2g). Notably, the choice selective cells tended to appear in the 
later part of the test segment (see the next section for analyses), whereas the mouse’s choice‑dependent 
running appeared at the initial part of the test segment (Fig. 1d, Supplementary Fig. 1i), implying that 
these cells did not causally guide the choices. 

Surprisingly, we also found cells that were active mostly on only one of the four trial types defined by a 
specific combination of a sample cue and a test cue. This type of activity is illustrated by an example neuron 
in Figure 2h that was active mostly on B/WB trials. Neurons of this type have selectivity for the sample cue 
(B vs. W trials), test cue (BW vs. WB trials), and reward direction (XOR; B/BW and W/WB trials vs. B/WB 
and W/BW trials). Such activity is an effective way to encode many task variables in single neurons and 
leads to separate representations of all four trial types across the population of cells. Importantly, these 
cells became active for a single trial type in the initial part of the test segment, which was early enough 
to influence upcoming choices. Interestingly, some single‑trial‑type selective cells responded differently 
on correct and error trials. Some cells were less active on error trials (Fig. 2i), and others were active for 
a different trial type on error trials (Fig. 2j), suggesting that the activity of these cells may be crucial for 
making accurate choices. Cells with each type of selectivity were found in multiple cortical areas, as will 
be shown in the next section.

We evaluated the selectivity of individual cells in a more systematic manner using a generalized linear 
model (GLM)35,58. The GLM included each task variable (sample cue, test cue, choice) and their interactions 
(including interactions between sample cue and test cue to allow for XOR selectivity) as predictors of a 
neuron’s activity (Fig. 2k, Methods). Because cells tended to be transiently active, we modeled each predictor 
as having selectivity conjunctive with maze position. Such position‑specific selectivity is consistent with 
cortical activity useful for navigation19,22,24,33. In addition, because movements can substantially correlate 
with neural activity in posterior cortex18,54,59,60, the GLM also included predictors for the mouse’s running 
velocity, measured as rotations of the treadmill around three axes. We quantified the model’s explanatory 
power as the fraction of deviance explained (FDE), computed on test data left out from fitting (Fig. 2l‑m, 
Supplementary Fig. 3).
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Fig. 2 | Calcium imaging and related analysis of neural activity
(a) Imaged cortical locations shown as individual fields‑of‑view. Bottom: same except superimposed on the field sign map for 

retinotopy. The circular outline shows the typical location of the cranial window.
(b) Reward direction on the four trial types determined by XOR combination of the sample cue and test cue (top). Choices 

follows XOR on correct trials (middle) or its opposite on error trials (bottom).
(c) Average activity across neurons, aligned to the start and end of the sample segment, start and end of the delay segment, 

start of the test segment, and T‑intersection (vertical dashed line). V1: n = 2084 cells, RSC: n = 4103 cells, MM: n = 2439 cells, 
A: n = 1120 cells. Shading indicates mean ± s.e.m. 
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Cells in V1 were best explained by the GLM across the imaged areas, followed by cells in RSC and MM 

(Fig. 2l). The large majority of cells in these areas were better explained by the full GLM that included task 
variables and running variables than by a reduced GLM that only included running variables (Fig. 2m). 
The task variables thus contributed significantly to neural activity in V1, RSC, and MM. In contrast, most 
cells in area A were well explained by the GLM with running variables alone, indicating that A had activity 
predominantly related to the movements of the mouse. We also imaged cells in M1 and M2, even though 
these areas did not appear to be strongly involved in task performance based on the optogenetics screen 
(Fig. 1g‑k). The GLM poorly predicted neural activity in M1 and M2 (Fig. 2l) although the mice showed 
similar performance during imaging sessions for each area (Supplementary Fig. 4a‑b), suggesting these 
areas may be less informative for solving the task compared to posterior cortical areas.

We evaluated the information in each neuron about each task variable by using the GLM framework to 
compute the likelihoods of neural activity conditioned on task and movement variables35 (Methods). At each 
time point in each trial, we estimated how likely one identity of a given variable was relative to the other 
(e.g., black vs. white sample cue) by computing a log likelihood ratio (logLR), a well‑established measure of 
single‑trial neural information61,62. Although logLR is a signed value that indicates the preferred identity of 
the variable, we adjusted the sign so that logLR was positive (or negative) for neural activity representing 
the correct (or incorrect) identity of the task variable in a trial. The magnitude of logLR was larger for more 
informative neural representations of the task variable. We used logLR to quantify information about task 
variables in the subsequent analyses. Potential confounds concerning locomotion‑related neural activity 
were removed by using the GLM that included all task and movement variables in a single model and by 
conditioning on the movement variables when computing information metrics, which together helped 
isolate the neural coding for a task variable of interest.

(d) Average activity normalized to its peak for each neuron (rows) sorted by time of peak average activity. The sequence of 
activity was cross‑validated by plotting activity on even‑numbered trials sorted by peak time on odd‑numbered trials.

(e) Example cell with sample cue selectivity in MM. Top row, correct trials; bottom row, error trials. Rasters of deconvolved and 
binarized calcium activity are shown for individual trials along with average activity (smoothed by running mean of 350 ms). 
Shading indicates mean ± s.e.m. Colors are the same as in panel (b). For error trials, the average activity is not shown for 
some trial types if they had less than three error trials per trial type.

(f) Similar to panel (e), an example cell in V1 with test cue selectivity.
(g) Similar to panel (e), an example cell in MM with choice selectivity.
(h) Similar to panel (e), an example cell in V1 with single‑trial‑type selectivity.
(i) Similar to panel (e), an example cell in RSC with single‑trial‑type selectivity.
(j) Similar to panel (e), an example cell in V1 with single‑trial‑type selectivity.
(k) Schematic of the GLM fitted to the deconvolved and binarized calcium activity of each neuron. Predictors were divided into 

groups for task variables and movement. Task variables were basis expanded with position along the maze to reflect the 
sequential activity observed in panel (d). See Methods for full details.

(l) GLM fit quality, measured as the fraction of deviance explained (FDE) on test data. Cells with converging fits for the full GLM 
were included. Mean ± s.e.m. of FDE across cells in each area is V1: 0.212 ± 0.005 (n = 1744 cells; 84% of detected cells), 
RSC: 0.155 ± 0.002 (n = 3865 cells; 94%), MM: 0.139 ± 0.003 (n = 2310 cells; 95%), A: 0.081 ± 0.004 (n = 1106 cells; 99%), 
M1: 0.045 ± 0.003 (n = 883 cells; 100%), M2: 0.027 ± 0.001 (n = 3243 cells; 100%). The mean FDE was significantly different 
across areas (p < 10‑4).

(m) Comparison of model fits for the full model (task and movement variables) and the movement‑only model (no task variables). 
Dots indicate individual cells that had converging fits for both models. Black traces show the running mean across cells 
(window size, 50 cells). Shading indicates mean ± s.e.m. V1: n = 1744 cells (84% of detected cells), RSC: n = 3865 cells (94%), 
MM: n = 2310 cells (95%), A: n = 1081 cells (97%).
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Widespread but distinct encoding distributions across cortical areas
We first tried to identify an area critical for mixing sample cue and test cue information by looking at 

major encoding patterns in individual cells. We therefore focused on the early part of the test segment 
and analyzed the encoding of the sample cue, test cue, and the mixture of the two that indicates the 
reward direction (XOR) for solving the task. At first, we used only correct trials to avoid analyzing complex 
modulations between correct and error trials (e.g., Fig. 2i‑j). We note that XOR information and choice 
information are identical when considering only correct trials because the reward direction and the 
mouse’s choice perfectly match on correct trials. 

In V1, the dominant information at any time point was related to the cue that was currently visible. 
V1 had high sample cue information in the sample segment that decayed during the delay segment and 
high test cue information in the test segment (Fig. 3a,d,e). Despite the predominance of information about 
the current visual cue, V1 also contained substantial XOR information about the reward direction (Fig. 
3b,c,f). To understand the mixing of sample cue information and test cue information in single cells in the 
decision‑making period (i.e., the beginning of the test segment; gray shading in Fig. 3a‑c), for each cell, we 
plotted its sample cue information in the test segment versus its test cue information in the test segment 
(Fig. 3g). We used the polar angle as a measure for how much a cell encoded one cue relative to the other. 
Cells residing close to 0° (horizontal‑axis) or 90° (vertical‑axis) corresponded to those encoding mostly 
sample cue or test cue information, respectively. In contrast, cells located around the diagonal (45°) had 
mixed representations of both cues. In the test segment, many V1 neurons had high information about 
the test cue and much less information about the sample cue (Fig. 3g‑i). V1 thus prominently represented 
the current visual stimulus and had a skewed distribution of information that strongly favored the test cue 
in the test segment.

The distribution of information in RSC was strikingly different. RSC had approximately equal levels 
of sample cue and test cue information in the test segment, and thus its activity was less dominated 
by the current visual cue (Fig. 3a,d,e). Importantly, RSC had significantly larger XOR information than V1 
(Fig. 3b,c,f). This XOR information rose from the onset of the test segment and peaked as mice began to 
report their choice in the form of a turn direction (Fig. 3b‑c, Supplementary Fig. 1i‑j). XOR information thus 
appeared early enough to influence the decision‑making process. The most striking feature of RSC activity 
was the extent to which sample cue information and test cue information were mixed at the level of single 
cells (Fig. 3g‑h). Many cells had approximately equal sample cue information and test cue information in the 
test segment (Fig. 3g‑h). The distribution of information in RSC cells in the test segment was approximately 
uniform between sample cue selective, mixed selective, and test cue selective cells, which was markedly 
different from the distribution in V1 (Fig. 3i). As a result, RSC contained a larger fraction of cells that 
equally mixed the memory information of the sample cue and visual information of the test cue than V1. 
Interestingly, RSC’s sample cue information was maintained by the sequential activation of cells during the 
delay segment until it was mixed with the test cue information (Fig. 3a, Supplementary Fig. 4c‑e). Together, 
the results show that RSC has approximately equal mixing of information, the largest fraction of cells with 
mixed information, and the highest XOR information, indicating that RSC could be a central area for mixing 
memory information and visual information. 
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Fig. 3 | Task‑related information and its mixing in posterior cortical areas.
(a) Sample cue and test cue information quantified as logLR in individual cells, averaged across correct trials and then across 

cells with a converging fit for the full GLM. Shading indicates mean ± s.e.m. Gray regions indicate the period (first one second) 
analyzed for the test segment in panels (d‑l). V1: n = 1962 cells (94% of detected cells), RSC: n = 4052 cells (99%), MM: 
n = 2409 cells (99%), A: n = 1096 cells (98%).

(b) Similar to panel (a), except for XOR information. 
(c) Zoomed view of XOR information from panel (b) for the first one second of the test segment. 
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The information profile in MM was intermediate between V1 and RSC. MM also contained information 
about the sample cue, test cue, and XOR (Fig. 3a‑f), with a profile of information in the test segment biased 
toward the test cue (Fig. 3i). This intermediate profile is consistent with MM residing at the interface of 
two spatial encoding gradients centered at V1 and RSC54. In contrast to the other areas, area A lacked 
information about the sample cue and test cue throughout the trial and had XOR information only when 
the mouse started turning at the T‑intersection (Fig. 3a‑f). The lack of prominent encoding of task variables 
in area A was consistent with its activity being mostly explained by the locomotion of the mouse (Fig. 
2m). When considering MM and A together, PPC surprisingly had the smallest fraction of cells with mixed 
information, and thus, at least in its anterior portion, PPC may not be a key area for mixing memory and 
visual information.

Notably, the cells with mixed sample cue information and test cue information contained XOR 
information about the reward direction (Fig. 3j, Supplementary Fig. 4f). These mixed selectivity cells tended 
to be the cells active preferentially on single trial types. We quantified this observation using a sparsity 
index ranging from 1 (equal activity across all trial types) to 4 (activity exclusively on a single trial type) 
and found that mixed selectivity cells had a sparsity index around 3 on average (Fig. 3k,m, Supplementary 

(d) Average sample cue information per cell in the sample, delay, and test segments. The information was averaged over the 
last 1 s for the sample segment, last 0.35 s for the delay segment, and first 1 s for the test segment. Error bars indicate 
mean ± s.e.m. The information was significantly different between areas (p < 10‑4), except for between RSC and MM in the 
sample segment (p = 0.11) and between V1 and RSC in the delay (p = 0.31) and test segments (p = 0.03). All p values were 
calculated by bootstrap. The significance threshold was adjusted by Bonferroni correction with 𝛼 = 0.05 to account for 6 
between‑area comparisons for panels (d‑f).

(e) Similar to panel (d) except for test cue information in the test segment. The information was significantly different between 
areas (p ≤ 0.0080).

(f) Similar to panel (d) except for XOR information in the test segment. The information was significantly different between areas 
(p ≤ 0.0074).

(g) For each cell (circles), the sample cue information in the test segment and the test cue information in the test segment on 
correct trials. 

(h) Data from panel (g) replotted in polar coordinates as the magnitude (r) and angle (θ). Cells closer to 0 degrees have more 
sample cue information, and cells closer to 90 degrees have more test cue information. Skewness of the distribution 
(mean ± s.e.m.); V1: ‑1.20 ± 0.10, RSC: ‑0.06 ± 0.05, MM: ‑0.67 ± 0.11. Skewness was computed without cells with extreme 
angles (the highest and lowest 1% of cells) or noise‑level information (magnitude r < 0.01). The distribution was significantly 
skewed for V1 and MM (p < 10‑4), but not for RSC (p = 0.88). The skewness was significantly different between V1, RSC, and 
MM (p < 0.01). All p values were calculated by bootstrap.

(i) Distribution of cells from panel (h) in discrete angle bins. Bins for θ = 0˚ and θ = 90˚ included cells on the axes and those with 
chance‑level deviation from the axes (Methods). Error bars indicate s.e.m. The fraction of cells with equal mixing (30 ≤ 𝜃 < 60) 
was significantly greater in RSC than in V1 or MM (p < 10‑4). The fractions of cells with noise‑level information (magnitude 
r < 0.01) are not shown.

(j) XOR information for cells across angles (running average, window of 50 cells). Cells from V1, RSC, and MM were combined 
because of their similarities (Supplementary Fig. 4f). Shading indicates mean ± s.e.m. Cells with noise‑level information 
(magnitude r < 0.01) were excluded. V1: n = 510 cells, RSC: n = 1114 cells, MM: n = 423 cells were included in panels (j‑l).

(k) Sparsity index for cells across angles (running average, window of 50 cells). See panel (m) for schematic of sparsity index. Cells 
from V1, RSC, and MM were combined because of their similarities (Supplementary Fig. 4g). Shading indicates mean ± s.e.m. 
Blue lines show chance sparsity index value computed with shuffled trial identities. 

(l) Similar to panel (k), except for the nonlinearity index. Cells from V1, RSC, and MM were combined because of their similarities 
(Supplementary Fig. 4h).

(m) Sparsity index and nonlinearity index in schematized activity distributions across the four trial types. The schematized 
examples range from non‑selective (top) to single‑trial‑type selective (bottom). The activities across trial types were 
normalized to add up to 4. Sparsity index was defined as the max normalized activity (highest bar). Nonlinearity index was 
the activity difference between trial types with different test cues (∆1 and ∆2) and followed by the absolute value of their 
difference (|∆1‑∆2|). 
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Fig. 4g). Therefore, the cells with mixed representations tended to mix a specific combination of a sample 
cue and a test cue, resulting in activity that was present mostly on single trial types. Furthermore, we 
quantified the degree of nonlinearity in the neural responses mixing the sample cue and test cue using a 
nonlinearity index (Fig. 3l‑m, Supplementary Fig. 4h, Methods), ranging from 0 (linear mixing) to 4 (most 
nonlinear mixing). Mixed selectivity cells showed nonlinear mixing as indicated by an average index above 
2. This nonlinear mixing can be advantageous for linear decoding by a downstream area63,64. 

 
Surprisingly, we observed very few cells that encoded only the reward direction (or choice direction). 

On correct trials, these cells would be active on two of the four trial types and have XOR information but 
not sample cue or test cue information. When considering all the cells with appreciable XOR information 
(logLR > 0.01) in the early part of the test segment, approximately 90% of these cells also had sample cue 
and/or test cue information (Supplementary Fig. 4i‑j). Furthermore, of all the cells with XOR information, 
roughly two‑thirds contained sample cue information prior to the test cue onset (Supplementary Fig. 4k‑l). 
Therefore, the dominant carriers of XOR information for the reward direction were the cells that encoded 
multiple task variables in the form of single‑trial‑type selectivity.

Together, these results reveal widespread representations in posterior cortex, with a bias toward 
visual encoding in V1, locomotion‑related activity in A, and mixing of memory and visual information in 
RSC. Further, they indicate that multiple areas of posterior cortex, including V1 and most prominently 
RSC, appear to be strong candidates for mixing memory with visual signals to guide choices. This mixing 
manifested as single‑trial‑type selectivity, which appears to be an effective way to encode many relevant 
task variables in single neurons.

Mixed representations predict choices in RSC, MM, and V1
If the mixed representations of sample cue information and test cue information are important for 

task performance, then we expect the XOR information to influence the mouse’s choice. We therefore 
compared trials of the same trial type, except with the opposite choice (e.g., turning left vs. right on B/
BW trials). That is, we compared correct and error trials. For trials with identical sensory cues, if cells 
have higher information about the reward direction (XOR) on correct trials than on error trials, then such 
an observation would support the notion that the information in those cells was used to guide accurate 
choices65,66. 

Strikingly, XOR information in RSC was markedly different between correct and error trials (Fig. 4b‑c, 
f‑g). XOR information in RSC was 86% lower on error trials than on correct trials and was thus nearly absent 
when mice made errors (Fig. 4f). Importantly, mice appeared engaged in error trials because error trials 
were interspersed with correct trials and were completed by mice with similar timing compared to correct 
trials (Supplementary Fig. 1a‑f). These findings suggest that the absence of XOR information in RSC on a 
given trial could have caused uncertainty and led to an inaccurate choice. A similar effect was also present 
in MM and V1, suggesting that their XOR information could also be behaviorally relevant, but at a lesser 
magnitude than in RSC (Fig. 4g). These results therefore suggest XOR information in RSC, MM, and V1 was 
used to guide the mouse’s choice.
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Fig. 4 | Comparing correct and error trials to identify activity patterns important for accurate decision‑making
(a) Sample cue and test cue information quantified as logLR in individual cells, averaged across trials and then across cells with 

converging fits for the full GLM for correct (solid) and error (dashed) trials. Shading indicates mean ± s.e.m. Gray regions 
indicate the period (first one second) analyzed for the test segment in panels (d‑k). V1: n = 1744 cells (84% of detected cells), 
RSC: n = 3865 cells (90 %), MM: n = 2310 cells (95%), A: n = 1105 cells (99%). 

(b) Similar to panel (a), except for XOR information. 
(c) Zoomed view of XOR information from panel (b) for the first one second of the test segment.
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Remarkably, the fraction of cells with mixed selectivity was markedly lower on error trials in RSC (Fig. 
4h‑i). Whereas correct trials had approximately equal numbers of sample cue, mixed, and test cue selective 
cells, error trials had notably fewer mixed selectivity cells. These differences in the fraction of neurons with 
mixed selectivity were most prominent in RSC and also present in MM and V1 (Fig. 4i). Relatedly, XOR 
information in mixed selectivity cells in all areas was greatly reduced on error trials (Fig. 4j). Because mixed 
selectivity cells were generally active on single trial types (Fig. 3k), the differences in XOR information 
between correct and error trials were due in large part to encoding changes in single‑trial‑type selectivity 
cells. As shown earlier in example cells, some single‑trial‑type selective cells were less active on error trials 
(Fig. 2i) and thus had less XOR information when mice made incorrect choices (Fig. 5h, magenta points 
near the origin). Other cells were active on different trial types on correct versus error trials (Fig. 2j) and 
encoded the incorrect identity of the sample cue or test cue on error trials (Fig. 4h, magenta points in 
gray shading) and thus incorrect (negative) XOR information (Fig. 4i, gray shading ranges). Together, these 
observations support the idea that aberrant activity of mixed selectivity cells across a distributed set of 
areas, and most strongly in RSC, contributes to incorrect choices. 

(d) Average sample cue information per cell in the sample, delay, and test segments for correct and error trials (specifically in the 
gray regions indicated in panels (b‑c)). Error bars indicate mean ± s.e.m. The difference between correct and error trials in the 
sample segment was significant in RSC (p = 0.004), but not for V1 (p = 0.55), MM (p = 0.03), and A (p = 0.03). The difference in 
the delay segment was significant for RSC and MM (p < 10‑4), but not for V1 (p = 0.47) and A (p = 0.03). The difference in the 
test segment was significant for V1, RSC, and MM (p < 10‑4), but not for A (p = 0.04). All p values were calculated by bootstrap 
for panels (d‑g). The significance threshold was adjusted by Bonferroni correction with 𝛼 = 0.05 to account for 4 area‑wise 
comparisons for panels (d‑h), and 6 between‑area comparisons for panel (g).

(e) Similar to panel (d) except for test cue information in the test segment. The difference was significant in RSC (p < 10‑4), but 
not for V1 (p = 0.50), MM (p = 0.10), and A (p = 0.08).

(f) Similar to panel (d) except for XOR information in the test segment. The difference was significant in V1, RSC, and MM 
(p < 10‑4), but not for A (p = 0.08).

(g) Difference in XOR information between correct and error trials in the test segment, calculated per cell and averaged across 
cells. Error bars indicate mean ± s.e.m. The decrease was significantly different from zero for V1, RSC, and MM (p < 10‑4), but 
not for A (p = 0.08). The amount of decrease was significantly different between areas (p < 10‑4), except for between V1 and 
MM (p = 0.98). 

(h) For each cell (circles), the sample cue information in the test segment and the test cue information in the test segment on 
correct trials (top/black) and error trials (bottom/magenta). Cells plotted in the top right quadrant correctly encoded the 
identity of the cues, and those plotted in other quadrants incorrectly encoded the identity of the sample cue, test cue, or 
both (gray shading).

(i) Distribution of cells from panel (h) in discrete polar angle bins for correct (black) and error (magenta) trials. Bins for θ < 0˚ 
and 90˚ < θ show the fraction of cells that incorrectly encoded the cue identity (gray shading). The fractions of cells with 
noise‑level information (magnitude r < 0.01) are not shown. The fraction of cells was significantly different between correct 
and error trials in the following bins; V1: θ < 0˚, 60˚ ≤ θ < 90˚, 90˚ < θ; RSC: all bins except for θ = 90˚; MM: θ < 0˚, 30˚ ≤ θ < 60˚, 
60˚ ≤ θ < 90˚, 90˚ < θ (p < 0.002). The significance threshold was adjusted by Bonferroni correction with 𝛼 = 0.05 to account 
for 7 bin‑wise comparisons. Error bars indicate s.e.m and are smaller than the data marker for some bins.

(j) XOR information for cells across angles (running average, window of 50 cells) for correct (black) and error (magenta) trials. 
The angle was defined on correct trials in panel (h). Shading indicates mean ± s.e.m. Cells with noise‑level information 
(magnitude r < 0.01) were excluded. V1: n = 487 / 475 cells, RSC: n = 1055 / 1035 cells, MM: n = 418 / 409 cells were included 
for the analysis of correct / error trials.

(k) Comparison of XOR information on correct (black) and error (magenta) trials, controlling for the sample cue information 
immediately before making decisions (at the end of the delay segment). Dots indicate individual trials, with XOR information 
averaged across simultaneously imaged cells in that trial. The running mean (window of 100 trials) is shown with shading 
indicating mean ± s.e.m. Gray bar at the bottom indicates bins of sample cue information for which XOR information was 
higher in correct trials (p < 0.05, bootstrap). The correct‑error trial difference was significantly larger in RSC compared to V1 
for 0.01‑0.05 logLR (4 bins) of the sample cue information, and compared to MM for 0‑0.02 logLR (2bins) of the sample cue 
information (p < 0.05, bootstrap). V1: n = 1476 correct / 307 error trials, RSC: n = 1420 correct / 265 error trials, MM: n = 1009 
correct / 221 error trials.
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The lower XOR information on error trials appeared to arise in multiple ways. One possibility is a failure 
to receive sufficient sample cue information, such as due to fading memory during the delay segment. 
Indeed, sample cue information was lower in RSC and MM in the delay segment on error trials (Fig. 4a,d). 
Moreover, in the test segment, sample cue information was more reduced on error trials compared to test 
cue information (Fig. 4d‑e). Another possibility is a failure to mix sample cue and test cue information in 
the test segment to generate XOR information despite the presence of sufficient sample cue information. 
To test this possibility, on each trial, we computed the population‑average information for the sample 
cue immediately prior to information mixing (i.e., the end of the delay) and for XOR in the test segment 
(Fig. 4k). For a given level of sample cue information, XOR information in RSC cells in the test segment 
was much reduced on error trials (compare black and magenta along a vertical slice of Fig. 4k). This result 
implies that mixing to produce XOR information was less effective on error trials. This difference was more 
prominent in RSC than in V1 and MM (Fig. 4k). These results suggest that incorrect choices in this task 
arose from the fading of memory signals as well as a failure to mix memory signals with current sensory 
signals, particularly in RSC.

Efficient reward direction encoding in populations of mixed selectivity cells
Given the importance of mixed selectivity at the level of single cells, we further investigated if the 

mixed selectivity cells play a privileged role at the level of populations of neurons. In many cases, it is 
assumed that the downstream readout operates as a linear decoder. Given that the reward direction is 
determined by the nonlinear XOR combination of the sample cue and test cue, a linear decoder cannot 
read out the reward direction from a population of pure selectivity cells, which consists of cells with only 
sample cue information and cells with only test cue information63. In contrast, a linear decoder can read out 
the reward direction from cells that contain XOR information, which in our case are the mixed selectivity 
cells. Thus, the mixed selectivity cells appear particularly critical under common assumptions about linear 
decoding mechanisms in the brain.

However, the brain possesses mechanisms that could enable nonlinear decoding67,68. With a 
nonlinear decoder, a downstream network could read out the XOR identity by combining cells with pure 
selectivity, that is by nonlinearly combining cells with pure sample cue selectivity and cells with pure test 
cue selectivity (Fig. 5a). With the assumption of a nonlinear readout mechanism, we assessed whether 
populations of mixed selectivity cells were still more informative about the reward direction (XOR identity) 
than populations of pure selectivity cells, by comparing simultaneously imaged populations from a given 
imaging field‑of‑view (~0.5 mm2 area). To evaluate the accuracy of the population code, we nonlinearly 
decoded XOR identity from the population and quantified the mutual information between the true and 
decoded XOR identity69. In RSC, MM, and V1, the mixed selectivity population represented XOR identity 
more accurately (higher mutual information) than the population of neighboring pure selectivity cells (Fig. 
5b). Populations of neurons in area A contained little XOR information due to the lack of mixed selectivity 
cells as well as pure selectivity cells for the sample and test cues (Fig. 5b‑c).
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Fig. 5 | Population code for XOR in populations of mixed selectivity or pure selectivity cells
(a) Mixed selectivity cells encode the identity of the sample cue, test cue, and reward direction (XOR) (purple rectangle). Neither 

pure sample cue selective cells nor pure test cue selectivity cells encode XOR by themselves, but XOR can be nonlinearly 
decoded by combining the two types of pure selectivity cells (white rectangle).

(b) Mutual information between the true and decoded XOR in populations of mixed selectivity cells (15˚< θ < 75˚ in Fig. 4h, 
correct trials) and pure selectivity cells (θ = 0˚ and θ = 90˚ from Fig. 4i, correct trials). Error bars indicate mean ± s.e.m. V1: 
n = 11 sessions (1783 trials), RSC: n = 12 sessions (1685 trials), MM: n = 7 sessions (1230 trials), A: n = 5 sessions (822 trials). 
Mutual information in mixed selectivity cells was significantly greater than that in pure selectivity cells in V1 (p=0.0008), RSC 
(p < 10‑4), MM (p < 10‑4), and A (p = 0.046). All p values were calculated by bootstrap and the significance threshold was not 
adjusted for multiple comparisons for panels (b‑d).

(c) Number of cells classified as mixed selective or pure selective (T = test cue selective; S = sample cue selective) per session. 
Error bars indicate mean ± s.e.m. V1: n = 11 sessions, RSC: n = 12 sessions, MM: n = 7 sessions, A: n = 5 sessions. The number 
of cells was significantly larger for pure selective cells than for mixed selective cells in V1 (p < 10‑4) and MM (p = 0.002), but 
not in RSC (p = 0.83) and MM (p = 0.09).

(d) Mutual information between the true and decoded XOR, computed separately on correct and error trials. Error bars indicate 
mean ± s.e.m. V1: n = 1476 correct / 307 error trials, RSC: n = 1420 correct / 265 error trials, MM: n = 1009 correct / 221 error 
trials, A: n = 753 correct / 69 error trials. For mixed selectivity cells, the difference between correct and error was significantly 
different from zero in V1 (p < 10‑4), RSC (p < 10‑4), MM (p < 10‑4), and A (p = 0.030). For pure selectivity cells, the difference 
between correct and error was significantly different from zero in A (p = 0.013), but not in V1 (p = 0.92), RSC (p = 0.12), 
and MM (p = 0.83). The difference between correct and error in mixed selective cells was significantly larger than that for 
pure selective cells in V1, RSC, and MM (p < 10‑4) but not in A (p = 0.88). The difference between correct and error in mixed 
selective cells was significantly larger in RSC than in V1 (p = 0.0001) or MM (p = 0.0063).
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We wanted to understand what contributes to the difference in the accuracy of the population code 
between the mixed selectivity and pure selectivity populations. One possibility is that there is a significant 
difference in the number of cells that fall into these groups. However, there were fewer, or at most equal, 
mixed selectivity cells relative to pure selectivity cells (Fig. 5c), indicating efficient XOR encoding of the 
mixed selectivity populations by containing more XOR information in a given number of cells. Second, 
it is possible that correlations in the activity between neurons in the population differed, such as noise 
correlations that create redundancy between neurons. However, in both the mixed selectivity and pure 
selectivity populations, the magnitude of noise correlations was similar (Supplementary Fig. 6a‑c). Also, 
the difference in XOR information between these populations largely remained even after disrupting noise 
correlations by shuffling trial labels independently for each neuron within a given trial type (Supplementary 
Fig. 6d). Together, these results indicate that the higher accuracy in the mixed selectivity population was not 
due to major differences in the population size or activity correlations, implying that the mixed selectivity 
itself is the key feature for an efficient code, which represents the reward direction more accurately in a 
smaller number of neurons.

 
We tested if this efficiency was a general property of mixed selectivity populations. Many properties 

of a neural population can potentially contribute to a population code, including the number of cells, 
noise correlations, and signal‑to‑noise ratio of encoding. Because it is difficult to control for and vary 
these properties in real data, we simulated neural activity and compared the decoding accuracy from 
either a mixed or pure selectivity population, while equalizing the properties between the two except for 
their selectivity (Supplementary Fig. 7a). Interestingly, across all conditions, a mixed selectivity population 
showed efficient XOR representation, in the sense that a mixed selectivity population encoded XOR more 
accurately than the same size of a pure selectivity population, although it was less informative about either 
the sample cue or the test cue (Supplementary Fig. 7b‑e). Furthermore, a simulated mixed selectivity 
population was also energetically efficient for encoding XOR in our task because it conveyed more XOR 
information per spike compared to a pure selectivity population (Supplementary Fig. 7f‑g). Together, mixed 
selectivity appears to account for the higher efficiency of the population code.

This efficiency can be intuitively explained by the number of decisions required to decode XOR 
(Supplementary Fig. 8a). In a pure selectivity population, both the sample cue and test cue need to be 
encoded correctly in order for XOR to be decoded correctly from the population (Supplementary Fig. 
8c). In contrast, XOR can be directly decoded from a mixed selectivity population, requiring only a single 
variable to be encoded correctly (Supplementary Fig. 8b). Thus, a mixed selectivity population enables 
more accurate decoding of XOR for a given condition even with a nonlinear decoding mechanism.

Finally, in imaged populations, XOR information was higher on correct trials than on error trials in 
mixed selectivity populations, supporting the notion that when mixing is reduced, the mouse could not 
make accurate choices (Fig. 5d). In contrast, the XOR information decoded from the populations of pure 
selectivity cells showed smaller differences between correct and error trials. Thus, the mixed selectivity 
populations may be used to guide the choice toward the reward direction, whereas the pure selectivity 
populations appear to be less critical. Notably, all the properties of mixed selectivity populations were 
present in RSC, V1, and MM (Fig. 5d), indicating that a distributed network of mixed selectivity cells could be 

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.10.487349doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.10.487349
http://creativecommons.org/licenses/by-nc-nd/4.0/


important for flexible decisions. However, whereas V1 and MM had a lower proportion of mixed selectivity 
cells than pure selectivity cells, RSC had similar proportions of each type (Fig. 3i, Fig. 5b), resulting in the 
largest number of mixed selectivity cells in RSC (Fig. 5c). This difference in proportions of cells, together 
with the loss of XOR information in mixed selectivity cells on error trials (Fig. 4j), explains why RSC has the 
largest change in XOR information between correct and error trials when averaged across individual cells 
(Fig. 4f‑g) or when quantified in its mixed selectivity population (Fig. 5d). For these analyses, similar results 
were present for a fixed neural population size (Supplementary Fig. 5). Together, these results suggest that 
a distributed network of mixed selectivity cells could be critical for flexible navigation decisions. These 
cells were surprisingly sparse in anterior PPC (area A) and densest in RSC, endowing RSC with the highest 
capacity to represent XOR information that could be read out to guide choices.

Discussion
Our work demonstrates a visual‑parietal‑retrosplenial network plays a central role in the flexibility 

of decision‑making during navigation. We first performed an optogenetics screen to find cortical areas 
necessary for the task and then used calcium imaging in these areas to screen for the activity patterns 
related to accurate decision‑making. This relatively unbiased approach allowed us to discover three key 
findings. First, activity in the visual‑parietal‑retrosplenial network was necessary for accurate performance 
on the task, in particular during the test segment when the memory information must be combined with 
the visual information to make a left‑right decision. Second, within this network, we identified neurons 
that nonlinearly mix short‑term memory with visual information in the form of single‑trial‑type selectivity. 
This mixed selectivity appeared useful for guiding navigation choices because it formed an efficient code 
that accurately represented the reward direction (XOR) in a relatively small number of cells and could be 
read out easily with a linear decoder. Third, these mixed selectivity cells had high XOR information when 
the mouse made correct choices but low XOR information when the mouse made errors, suggesting that 
their activity could be used to guide the mouse’s choices. Together, these findings lead to the intriguing 
proposal that the mixed selectivity cells have a causal link to the flexibility of navigation decisions.

The mixed selectivity cells for memory and visual information were distributed across many areas of 
posterior cortex and had similar features across the areas. However, relative to other posterior cortical 
areas, RSC showed an enrichment of these cells, the most equal mixing of memory and visual information, 
the highest XOR information, and the largest differences in encoding of reward direction between correct 
and error trials. The discovery of RSC’s central involvement in flexible navigation decisions was surprising to 
us because studies of decision‑making have often highlighted the importance of other cortical areas, such 
as frontal and parietal cortices3,33‑35,47,62,70‑75. In contrast, RSC is widely viewed as important for encoding 
current navigational variables23‑25,27,29,30,76‑78. RSC can also represent a wide range of internal signals, including 
spatial memory42‑44, time79,80, and value81,82. Although recent studies have indicated a role for RSC for fixed 
sensorimotor associations in decision‑making tasks37,38,40, our work extends further by showing how 
memory and sensory signals in RSC can be combined to mediate flexibility of sensorimotor associations 
during decision‑making. We propose that a general function of RSC is to combine internal signals with 
current sensory signals by forming a mixed representation that can flexibly guide navigation actions. Thus, 
the mixed selectivity observed in our study could be a specific case of a more general function of RSC, and 
our results highlight RSC as a candidate area to investigate flexibility of decision‑making during navigation.
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While we found an enrichment of mixed representations in RSC, further investigation will be required 
to understand mechanisms that generate these representations. It is possible that RSC receives inputs that 
separately contain visual and memory information, as is consistent with the dense axonal projections it 
receives from visual cortices and the hippocampal formation83‑86. Indeed, the hippocampus contains cells 
that encode the identity of a landmark even behind the animal (i.e., landmark vector cells)87. These cells 
might maintain the short‑term memory of the sample cue identity in our task and provide the memory 
information to RSC. In this case, RSC neurons might play an active role in mixing these streams of information. 
Alternatively, the mixed representations might arise through computations in a distributed network 
spanning multiple areas, which is consistent with the presence of mixed selectivity neurons throughout 
posterior cortex in our experiments. Future studies aimed at characterizing and manipulating the inputs to 
RSC will help to clarify whether RSC plays a causal role in mixing memory and visual information.

An appreciable fraction of V1 neurons also showed similar mixed selectivity. In the population of V1 
neurons, the current visual cue was more strongly encoded than the memory, which contrasted with the 
RSC population that had equal mixing of the two. Although the delay length in our task was comparable to 
the typical delay length used in delayed match tasks in monkeys5,6,8,45 and humans46, some of the “memory” 
in V1 (and possibly other areas) during the delay segment might have resulted from decaying visual signals 
or short‑term synaptic plasticity49‑51, which could result in nonlinear interactions of sequential visual 
signals from the sample and test cues (e.g., visual adaptation). Regardless, the reward direction (XOR) was 
encoded in V1 by mixed selectivity cells, which had similar properties to those in RSC. This finding adds to 
a growing list of functions for V1 during navigation, including representing running velocity88, head angular 
velocity89, spatial position31, and reward‑related activity90.

Surprisingly, PPC had the lowest density of mixed selectivity cells in the population. The activity in 
area A was mostly related to the locomotion of the mouse. This locomotor‑related activity is unlikely to 
be essential for driving motor outputs because when we inhibited PPC, including A, in our optogenetics 
experiments, the mouse completed trials without obvious motor deficits (Supplementary Fig. 2j‑o). 
Consistently, in previous work that inhibited cortical locations near A, the mouse was able to perform 
simple locomotor tasks and only showed deficits in decision‑making tasks33,39. Area MM had an activity 
profile intermediate between RSC and V1. Even when considering this part of PPC, the magnitude of XOR 
information and the density of mixed selectivity cells were lower than in RSC. Much previous work has 
connected PPC with decision‑making during navigation. Our findings indicate that PPC’s role in navigation 
decisions likely does not include the integration of memory and visual information. Instead, PPC may be 
important for planning and guiding upcoming navigational actions with neighboring areas18,33.

These differences across areas formed a gradient rather than sharp boundaries, consistent with a 
representational principle that each area encodes all or most of the essential task variables but with 
key distinctions in the magnitude of encoding of those variables in each area54. Together, the neural 
representation gradually shifted from mixed selectivity in RSC to locomotor selectivity in the anterior part 
of PPC (area A). This spatial gradient appears to overlap with the spatial gradient going from allocentric 
representations in RSC to egocentric representations in PPC20. This overlap might reflect a relationship 
between decision‑making and navigation. Allocentric representations often rely on memory (e.g., past 
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landmarks) when the current sensory cues do not fully identify the animal’s location. If we regard each trial 
type as a different maze environment, the single‑trial‑type selectivity can be interpreted as an allocentric 
representation to identify the mouse’s location (maze environment) by using the current sensory cue (test 
cue) and the memory of the past landmark (sample cue). By contrast, the locomotor‑related activity can 
be interpreted as an egocentric representation that encodes running with respect to the mouse’s heading 
direction. Therefore, along the spatial gradient from RSC to PPC, the conversion of the reference frames in 
navigation might share the same mechanism that converts the mixture of memory and visual information 
into locomotor selectivity during flexible navigation decisions.

Our findings highlight the importance of nonlinear mixed selectivity for flexible decision‑making 
during navigation. Our results support the theoretical idea that nonlinear mixed selectivity generates a 
high dimensional neural representation, which increases the number of ways to flexibly associate inputs 
to outputs by a linear decoder63,64. Whereas some studies have found dense activity patterns across 
conditions in individual neurons10,64,71, we found mixed selectivity cells with sparse activity arising mostly 
for a specific condition (trial type) defined by a combination of the sample cue and test cue. We were 
surprised by the scarcity of mixed selectivity cells that represented only the reward direction, and by the 
prominence of the mixed selectivity cells that instead encoded the reward direction along with other task 
variables (i.e., the sample and test cue). This sparse form of mixed selectivity may be more interpretable 
for the navigation system because it can represent a specific allocentric location (or maze environment). 

Furthermore, we demonstrated that mixed selectivity cells efficiently formed a more accurate 
representation of XOR than pure selectivity cells in real and simulated populations. In addition, the sparse 
representation seems energetically efficient in the sense that it transmits more information per spike91. 
While it is costly for the brain to maintain nonlinear mixed selectivity for numerous combinations of features 
in the real world, it appears beneficial to create selective cells for familiar and important combinations of 
features, such as the combinations of the sample cues and test cues that indicate the reward direction 
in our experiments. Theoretically, in a population of pure selectivity cells, if the decoding accuracy for a 
single stimulus feature is p, then the decoding accuracy for a combination of k independent features would 
decay exponentially with the number of features as pk. In contrast, decoding accuracy for mixed selectivity 
cells would not suffer from such a decay. Thus, nonlinear mixed selectivity cells might have an advantage 
to provide a compact and accurate representation for the recognition of complex stimuli, such as spatial 
environments in our cases.

Although much work has highlighted the prevalence of mixed selectivity in the brain8,64,71,92,93, its 
importance has often been inferred from artificially created populations of non‑simultaneously recorded 
neurons. Instead, we demonstrated the importance of nonlinear mixing for accurate behavior in a 
real, large‑scale, simultaneously recorded population. Furthermore, we showed that mixed selectivity 
is a distributed property across multiple parts of posterior cortex, including V1. The major differences 
between correct and error trials in populations of mixed selectively cells, especially relative to other types 
of selectivity, provide the suggestion that mixed selectivity has a causal role in flexible decisions. Now that 
we have identified these putative decision‑related signals, as experimental approaches become readily 
available to manipulate the activity of specific cells based on their encoding properties94‑99, it will be of 
great interest to test directly the causal role of mixed selectivity cells for flexible navigation decisions.
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Methods 613 

 614 

Animals 615 

All experimental procedures were approved by the Harvard Medical School Institutional Animal Care and 616 

Use Committee and were performed in compliance with the Guide for the Care and Use of Laboratory 617 

Animals. Six male C57BL/6J mice (Jackson Laboratory, Stock No. 000664) were used for the calcium 618 

imaging experiments, and twelve male VGAT-ChR2-EYFP mice (eleven mice from Jackson Laboratory, 619 

Stock No. 014548; one mouse with VGAT-IRES-Cre/+; Ai32/+) were used for the optogenetics 620 

experiments. Most of the mice were 8-16 weeks old at the start of behavioral training. Mice were housed 621 

on a reverse 12 hour dark/light cycle and in pairs of littermates. Mouse health was evaluated daily. 622 

 623 

Surgical procedures 624 

Calcium imaging surgery 625 

For calcium imaging experiments, prior to behavioral training, mice were implanted with a titanium 626 

implant that was designed for imaging procedures. The headplate had an opening in the middle that 627 

allowed subsequent placement of a cranial imaging window. The location of the headplate opening was 628 

centered at 2.0 mm lateral and 2.5 mm posterior relative to bregma to allow imaging in V1, RSC, and PPC 629 

and was centered at 1.2 mm lateral and 1.2 mm anterior relative to bregma for imaging in M1 and M2. 630 

The headplate was affixed to the skull by dental cement (Radiopaque Metabond, Parkell) mixed with India 631 

ink (5% vol/vol) to increase light shielding for imaging. To allow for an imaging plane parallel to the surface 632 

of cortex, the headplate was tilted by 15° in roll relative to the mouse’s body axis. In the initial surgery 633 

prior to behavioral training, the planned center coordinates for the cranial window were marked by a drill 634 

and ink on the skull and covered by transparent dental acrylic (Ortho-Jet, Lang Dental), so that the 635 

coordinates could be recovered in a subsequent cranial window surgery. 636 

 637 

A cranial window surgery was performed when the mouse had achieved high performance on the delayed 638 

match-to-sample task (greater than 80% correct). The cranial window was made centered at the 639 

coordinates marked during the initial implantation of the headplate (2.0 mm lateral and 2.5 mm posterior 640 

to bregma for posterior imaging; 1.2 mm lateral and 1.2 mm anterior to bregma for anterior imaging). A 641 

window for posterior imaging was constructed by bonding two 3.5 or 4.0 mm-diameter coverslips to each 642 

other and to an outer 4.0 or 5.0-mm diameter coverslip (#1 thickness, Warner Instruments). A window for 643 

anterior imaging was constructed by bonding two laser-cut 2.0 x 2.5 mm oval coverslips to each other and 644 

to an outer 3.0 mm diameter coverslip (#1 thickness, Warner Instruments). Coverslips were bonded to 645 

each other by UV-curable optical adhesive (Norland Optics NOA 65 or 68). 646 

 647 

AAV2/1-synapsin-GCaMP6s-WPRE-SV40 virus (University of Pennsylvania Vector Core Facility, Catalog No. 648 

AV-1-PV2824) was diluted to ~0.5–1.0 x 1013 gc/mL in phosphate-buffered saline. Injections were made 649 

using a glass pipette and custom air-pressure injection system. At each site, ~50–70 nL was injected 250-650 

300 μm and 450-500 μm below the dura over 1-2 minutes. After each injection, the pipette was left in 651 

place for an additional 1-2 minutes. For the posterior cranial window, a glass pipette was inserted at a 30° 652 

angle relative to the brain surface, and virus was injected at three sites in V1 (2.2 mm lateral, 3.5 mm 653 
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posterior; 2.8 mm lateral, 3.5 mm posterior; 2.8 mm lateral, 3.0 mm posterior to bregma), two sites in 654 

RSC (0.5 mm lateral, 2.15 mm posterior; 0.5 mm lateral, 2.85 mm posterior to bregma), and three sites 655 

for PPC (1.2 mm lateral, 1.75 mm posterior; 1.8 mm lateral, 2.0 mm posterior; 2.5 mm lateral, 2.25 mm 656 

posterior to bregma). For the anterior cranial window, a glass pipette was inserted perpendicular to the 657 

brain surface, and virus was injected at ten sites across M1/M2 areas (nine sites in a 3 x 3 grid pattern 658 

centered at 1.2 mm lateral, 1.2 mm anterior to bregma with 500 μm spacing, and one site near ALM at 659 

1.2 mm lateral, 2.2 mm anterior to bregma). When the planned coordinates overlapped with blood 660 

vessels, injections were shifted by 50-100 μm to avoid rupturing the vessels. 661 

 662 

The window was sealed using dental cement (Radiopaque Metabond, Parkell) mixed with India ink (5% 663 

vol/vol). To prevent light contamination and create a water bath for imaging, an aluminum ring was affixed 664 

to the top of the headplate with dental cement mixed with India ink. Experiments started after ~2 weeks 665 

from viral injection and typically continued for 6–8 weeks. Experiments were terminated when GCaMP6s 666 

expression appeared high, with some neurons exhibiting GCaMP6s in the nucleus. 667 

 668 

Optogenetics surgery 669 

For optogenetics experiments, mice were implanted with a clear skull cap, following procedures described 670 

previously47,54. The cranial surface was exposed, and the headplate was affixed to the interparietal bone 671 

(behind the lambda suture) by transparent dental cement (Clear Metabond, Parkell). The remaining 672 

cranial surface was covered by a thin layer of cyanoacrylate (Insta-Cure, Bob Smith Industries) and 673 

reinforced by ~1 mm layer of transparent dental acrylic (Ortho-Jet, Lang Dental) on top. After a mouse 674 

was trained, the acrylic surface was polished with a polishing drill (Model 6100, Vogue Professional) using 675 

denture polishing bits (HP0412, AZDENT) and coated by a thin layer of clear nail polish (Electron 676 

Microscopy Sciences, 72180). For light shielding, an aluminum ring was affixed to the top of the headplate 677 

by dental cement mixed with India ink or carbon (Sigma-Aldrich). Fiducial marks were made on the 678 

aluminum ring to aid laser alignment. 679 

 680 

Behavior 681 

Virtual reality system 682 

The virtual reality system was built based on previous designs33,34. Virtual reality environments were 683 

constructed and operated using MATLAB-based ViRMEn software (Virtual Reality Mouse Engine)100. A 684 

projector (PicoPro / PicoBit, Celluon Inc., Laser Beam Pro, KDC) was used to display the virtual 685 

environment onto the back side of a 24-inch diameter half-cylindrical screen. The virtual environment was 686 

updated in response to the mouse’s locomotion on an open cell Styrofoam spherical treadmill (8-inch 687 

diameter, ~135 g). Two optical sensors (ADNS-9800, Avago Technologies) positioned 45° below the 688 

equator of the ball and separated by 90° in azimuth were connected to a Teensy-3.2 microcontroller 689 

(PJRC.COM) to measure the 3-dimensional rotation velocity of the ball (roll, pitch, and yaw).  690 

 691 

Delayed match-to-sample task 692 

Mice performed the navigation-based delayed match-to-sample task in a virtual reality T-maze (Fig. 1a, 693 

Supplementary Fig. 9d). The mouse traversed three segments: sample, delay, and test in the T-maze. In 694 
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each segment, the mouse spent a variable duration from trial to trial depending on the maze traversal 695 

speed. In the sample segment, either black (B) or white (W) patterns on the wall provided the sample cue. 696 

In the delay segment, the walls had a gray pattern in all trials. The test segment provided the test cue, 697 

either white patterns on the left side and black patterns on the right side (WB) or vice versa (BW). The 698 

test cue was not revealed (and not visible) until the mouse reached a defined spatial position (240 cm 699 

away from the maze start). At the T-intersection, the mouse was required to make a right or left choice 700 

by turning to the T-arms whose color matched the sample cue. When the mouse ran 20 cm into the T-701 

arm, the trial ended. The correct choice was rewarded by 4-5 µL of 10x diluted sweetened condensed milk 702 

(Eagle Brand) or 30 mM acesulfame solution (Prescribed For Life). Incorrect choices were not rewarded, 703 

and consecutive error trials were penalized by prolonged inter-trial intervals. After the intertrial interval 704 

(at least 4 s), the next trial started with the mouse location reset to the beginning of the maze. The sample 705 

and test cues were randomly selected on each trial and were thus independent of one another. 706 

 707 

The length of the T-stem was 400 cm, of which the last 160 cm was allocated to the test segment. The 708 

delay segment ranged from 20 to 100 cm in length and varied based on the behavioral performance (see 709 

below). The remaining maze length was allocated to the sample segment (140 to 220 cm).  710 

 711 

In order to control the visual scene, movement in the virtual environment was constrained. The mouse’s 712 

heading angle was fixed straight throughout a trial. In the T-stem, only forward/backward movements 713 

were allowed in the T-stem, and lateral movements were not allowed; the pitch velocity of the spherical 714 

treadmill was translated into forward/backward movement, and the roll and yaw velocities did not affect 715 

movement in the virtual environment. Backward movement was not observed in any mice. In the T-arms, 716 

only lateral movements were allowed; the roll velocity was translated into lateral movements, and the 717 

pitch and yaw velocities did not affect the movement.  718 

 719 

The black and white walls for the sample cue and test cue had dot patterns (white dots on a black wall 720 

and black dots on a white wall). The gray wall for the delay segment had a striated pattern to create optic 721 

flow.  722 

 723 

Behavioral training  724 

Starting five days before the first training session, mice were put on a water restriction schedule that 725 

limited their total consumption to 1 mL per day. The weight of each mouse was monitored daily and 726 

additional water was given if the mouse’s weight fell below 80% of the pre-training weight. Mice were 727 

trained daily for 45-60 minutes at approximately the same time each day. Mice learned the task through 728 

the following four phases of training (Supplementary Fig. 9). Approximately 25-50% of mice learned to 729 

perform the delayed match-to-sample task with high accuracy (greater than 80% correct). To increase the 730 

statistical power for the analyses of error trials, we included more sessions with moderate accuracy 731 

(~80%) to analyze the imaging experiments, compared to the optogenetic experiments. 732 

 733 
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Phase 1: Linear track 734 

For the first phase, mice were trained to run straight on the spherical treadmill in a linear track. Mice 735 

received a reward when they reached a gray tower presented at the end of the linear track. Pitch and roll 736 

velocity were translated to the forward speed and rotation of heading angle, respectively. The heading 737 

angle was not fixed at this stage, so that mice were required to correct their running trajectory to a straight 738 

path; this appeared to help produce good control of the spherical treadmill. For initial trials, the track 739 

length was short to increase the frequency of reinforcement. The track length was gradually extended if 740 

mice reached a tower within 30 s. Typically, mice learned to run along a ~300 cm track within 3-5 days of 741 

training. 742 

 743 

Phase 2: Single tower T-maze 744 

For the second phase, mice were trained to make visually guided turns to the right or left in a T-maze. The 745 

length of the T-stem was set to 200 cm, and a single gray tower was presented either behind the right or 746 

left T-arm throughout the trial. Mice received a reward when they reached the gray tower by turning 747 

towards the tower at the T-intersection. To facilitate training for the following phases, the T-stem had 748 

either a black or white wall pattern (later used as the sample cue) whereas T-arms had the black pattern 749 

on one arm and white pattern on the other (later used as the test cue). The gray tower was located behind 750 

the arm that matched the color to the initial cue. While mice could make turns based only on the gray 751 

tower, the wall patterns acclimated mice for the next phase of training. 752 

 753 

Phase 3: Two tower T-maze 754 

For the third phase, mice learned associations between a combination of wall patterns and turning 755 

directions (choices). The maze structure was the same as in the second phase, except now we interleaved 756 

trials with a single tower (identical to Phase 2 trials) with trials with two towers, in which a tower was 757 

located behind both T-arms. For two tower trials, mice were no longer able to rely on the tower location 758 

to decide the turning direction and instead were required to use the wall patterns to make choices 759 

following the delayed match-to-sample rule. The fraction of two-tower trials was dynamically adjusted 760 

based on the performance criteria described below; the fraction was increased or decreased with a step 761 

of 10%. When the fraction of two-tower trials reached 100% and the behavioral performance was 762 

consistently above 90% accuracy, the mice were advanced to the final phase of training. 763 

 764 

Phase 4: Delayed match-to-sample task with variable delay 765 

For the final phase, mice learned to make a choice in a longer maze (400 cm) based on the combination 766 

of the sample and test cues, except now with a delay segment added. With a delay segment, the sample 767 

cue disappeared at the onset of the delay, and the test cue appeared instantaneously at the offset of the 768 

delay. The test cue was not visible by looking down the T-stem; rather, we made the test cue appear at 769 

an exact spatial location (240 cm away from the maze start). This was the first training phase with a delay 770 

segment. We gradually lengthened the delay segment as the mouse’s performance improved. We 771 

lengthened the delay segment while simultaneously shortening the sample segment, thus keeping the 772 

overall maze length constant. For our analyses, we included trials with a delay length of at least 20 cm.  773 

 774 
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Because this task was challenging for the mouse, we found it was helpful to include “crutch trials” that 775 

were easy for the mouse. In randomly selected 10% of trials, we omitted the delay segment 776 

(Supplementary Fig. 9e). These trials had a maze structure similar to the two tower T-maze in Phase 3. 777 

Crutch trials were not analyzed in the imaging and optogenetics experiments. 778 

 779 

Adjustment of task difficulty 780 

The task difficulty was adjusted by the length of the delay segment (Phase 4) or the fraction of two-tower 781 

trials (Phase 3). We adjusted the difficulty level based on the behavioral performance, statistically 782 

evaluated by a sequential probability ratio test101,102. When the test decided that the mouse’s 783 

performance was at the chance level (50%), task difficulty was decreased, whereas when the test decided 784 

that the mouse’s performance was greater than 80% correct, task difficulty was increased. We set the 785 

highest and lowest levels of difficulty, so the level was adjusted within a set range. Performance was 786 

evaluated using all trials from the last statistical decision up to a current trial in a session. For well-trained 787 

mice, the task difficulty typically remained stationary throughout a session after initial increases at the 788 

start of the session. 789 

 790 

Optogenetics experiments 791 

The photoinhibition system was built based on a previous design54. A 470 nm laser (LRD-0470-PFR-00200, 792 

Laserglow Technologies) was passed through galvanometric scan mirrors (6210H, Cambridge Technology) 793 

and focused using an achromatic doublet lens (f = 300 or 400 mm, AC508-300-A-ML, AC508-400-A-ML, 794 

Thorlabs). The laser (analog power modulation, off to 95% power rise time, 50 ms) and mirrors (< 5 ms 795 

step time for steps up to 20 mm) allowed simultaneous inhibition of bilateral sites by rapidly alternating 796 

the inhibition sites by moving the mirrors while the laser was turned off. The focused laser had a top-hat 797 

profile with a diameter of approximately 200 µm.  798 

 799 

In each hemisphere of VGAT-ChR2 mice, 28 inhibition target sites were arranged in a grid with 1 mm 800 

spacing, covering from 0.5 to 3.5 mm in the medial-lateral direction and from -4 mm to +3 mm in the 801 

anterior-posterior direction with respect to bregma (Fig. 1l). For three mice, inhibition was always applied 802 

throughout a whole trial, and for four mice, inhibition was applied throughout a whole trial or during a 803 

specific trial segment (sample, delay, or test segment). In a separate four mice, including one VGAT-IRES-804 

Cre/+; Ai32/+ mouse, inhibition was expanded to three bilateral pairs of sites in RSC (centered at -3.5, -805 

2.5, -1.5 AP; 0.5 ML) in all segments or in a specific trial segment (sample, delay, or test segment). 806 

 807 

The inhibition was applied in randomly selected and interleaved 10-40% of trials. The fraction of inhibition 808 

trials was adjusted to maintain behavioral performance above ~80% correct across all trials. In each 809 

inhibition trial, the combination of bilateral inhibition sites and the inhibition segment were selected 810 

randomly without replacement. When all combinations were selected, the process was reinitialized and 811 

repeated. 812 

 813 

The laser power at each inhibition site had a near-sinusoidal temporal profile at 40 Hz and time-averaged 814 

power of 2–5 mW. For the expanded inhibition in RSC, the total laser power across the three sites on each 815 
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hemisphere was ~5–10 mW for three mice and ~5 mW for one VGAT-IRES-Cre/+; Ai32/+ mouse. To ensure 816 

inhibition prior to the mouse seeing the sample cue, the laser was turned on 1 s before the trial onset for 817 

the inhibition throughout the whole trial and for the sample segment inhibition. For a similar reason for 818 

the test cue, the light was turned on 20 cm before the test segment for the test segment inhibition. The 819 

light was turned off at the trial end (i.e., onset of the inter-trial interval).  820 

 821 

Electrophysiology 822 

To measure the spatial extent of optogenetic inhibition across cortical areas, extracellular recordings were 823 

conducted in one VGAT-ChR2-YFP mouse (Supplementary Fig. 2). A small craniotomy (diameter of ~1 mm) 824 

was created on the left side of the region of interest in the left hemisphere one day before the recording 825 

sessions. A 32-channel silicon probe (A1x32-Poly2-5mm-50s-177, NeuroNexus) was angled at 55-60° from 826 

the cortical surface at the entry point to avoid blocking the laser oriented perpendicularly to the cranial 827 

surface. The tip of the probe was advanced down to 1 mm below the dura for PPC and RSC recordings, 828 

and to 1.7 mm below the dura for M2/ACC recordings, based on manipulator readings. The signals were 829 

recorded at 20 kHz by the Intan RHD2000 Evaluation System, and highpass-filtered at 250 Hz offline. Multi-830 

unit activity was measured offline by counting the number of spikes that crossed a threshold, which was 831 

adjusted to include most of the local spikes in the absence of optogenetic inhibition. 832 

 833 

The number of spikes were counted across recording sites during the first 5 s of a laser-on period, and 834 

then normalized to the spike counts during 5 s of a laser-off period immediately before the laser onset. 835 

Trials with less than 5 spike counts in the laser-off period were excluded. Recordings between 600 and 836 

700 µm below the cortical surface were used for the evaluation of effects as a function of the horizontal 837 

distance from the laser center (Supplementary Fig. 2d-f). Recordings within 500 µm from the laser center 838 

were used for the evaluation across the cortical depth (Supplementary Fig. 2g-i). 839 

 840 

Widefield retinotopic mapping 841 

To locate the imaged areas with respect to visual areas, a retinotopic map was obtained from two of four 842 

mice that were used for imaging of posterior cortical areas (V1, RSC, MM, and A). The details of the 843 

procedure were described previously41.  844 

 845 

Widefield images were collected by a custom-built epifluorescence macroscope103. Excitation light was 846 

provided by a blue LED (455 nm LED, Thorlabs; band-pass filtered at 469 nm with 35nm bandwidth, 847 

Thorlabs), focused on and reflected by a small mirror (8 mm Diameter 45° Rod Mirror, Edmund Optics). 848 

The reflected diverging light passed through a camera lens (NIKKOR AI-S FX 50mmf/1.2, Nikon) and 849 

illuminated the cortical surface. Emission light was collimated through the same camera lens, band-pass 850 

filtered (525 nm with 39 nm bandwidth, Thorlabs), and imaged by a second lens (SY85MAE-N 85 mm F1.4, 851 

Samyang) onto a CMOS camera (ace acA1920-155um, Basler). 852 

 853 

Mice with expression of GCaMP6s were lightly anesthetized by isoflurane on a platform with their head 854 

angled at 30˚ with respect to a computer display (MG279Q, Asus), so that their right eye was positioned 855 

in front of the display. The visual stimulus was designed based on a previous study104. A spherically 856 
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corrected black and white checkered moving bar (5 or 7 deg in width) swept vertically and horizontally in 857 

four directions across the display with the speed of 7 deg/s. Each sweep direction was repeated six times 858 

during a block, and four or six blocks were presented in a session. Images were collected at 60 Hz, 859 

synchronized with the presentation of the visual stimulus on the display. The retinotopy was inferred from 860 

the spatial phase (location) of the stimulus that excited cells at the sweeping frequency105. Images were 861 

averaged across repeats for a given stimulus location (discretized in 2 deg bins) and smoothed by a 862 

Gaussian filter (25 µm s.d.). For each pixel., the spatial phase of the fluorescence signal was computed by 863 

Fourier transform, separately for the vertical and horizontal sweeps. The gradient of the spatial phase was 864 

used to compute the field sign map106. The retinotopic maps were overlaid on the maps of area boundaries 865 

based on the Allen Mouse Brain Common Coordinate Framework56, by aligning the border between V1, 866 

PM, and AM (Fig. 2a)107. 867 

 868 

Two-photon calcium imaging 869 

Imaging data were collected by a custom-built two-photon microscope. The microscope consisted of a 870 

resonant scanning mirror and a galvanometric mirror, separated by a scan lens relay telescope. Excitation 871 

light was delivered from Ti:sapphire laser (Coherent). The average laser power at the sample was ~50 872 

mW. The emission light was separated into green and red channels by a dichroic mirror (580 nm long-873 

pass, Semrock) and bandpass filters (525/50 and 641/75 nm, Semrock), and collected by GaAsP 874 

photomultiplier tubes (Hamamatsu). Signals were recorded only from the green channel for the analyses. 875 

Fluorescence light collection optics were housed in an aluminum enclosure to avoid the interference of 876 

visible light. 877 

 878 

The behavioral setup (the mouse, spherical treadmill, head fixation system, and reward delivery system) 879 

was mounted on a 12” x 12” breadboard (Thorlabs) on a XYZ translation stage (Dover Motion).  880 

 881 

A Nikon 16x, 0.8 NA objective lens was used to collect images from a ~700 µm x ~700 µm plane. Scanimage 882 

(Vidrio Technologies) was used to acquire 512 x 512 pixel images at 30 Hz. The imaging location and depth 883 

was varied daily to sample data from a wide range of areas and depths. The image plane was chosen 884 

between 100 µm and 400 µm below the dura, with the majority of planes between 100 µm and 200 µm 885 

(50/56 planes). 100,000 frames were recorded in each imaging session over ~1 hour. To align timestamps 886 

between the image acquisition and the virtual reality software, clock pulses were output from ScanImage 887 

at each frame and from ViRMEn at each refresh of the virtual environment, and saved together in a 888 

separate computer. 889 

 890 

Image and signal processing 891 

Acquired images were motion corrected in hierarchical steps41. First, “line-shift correction” was applied 892 

to align line-by-line alternating offsets in images caused by bidirectional scanning. Then, “sample 893 

movement correction” was applied to eliminate between-frame movement artifacts (rigid 894 

transformation) by FFT-based 2d cross-correlation108, and to mitigate within-frame movement artifacts 895 

(non-rigid transformation) by Lucas-Kanade method109. Finally, “sample deformation correction” was 896 

applied to compensate the image deformation (non-rigid transformation) induced by expansion or 897 
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contraction of the brain tissue over long timescales (over minutes to an hour). This was achieved by 898 

adjusting the mean image of each imaging block (1,000 frames) to the global reference image (mean 899 

image of the middle block of a session), by sequential rigid, affine, and non-rigid transformations, in this 900 

order. All of these transformations were combined into one nonlinear displacement field using cubic 901 

interpolation and applied to the imaging data in a single step to minimize interpolation artifacts. 902 

 903 

After the motion correction, potential fluorescence from sources and neuropils were extracted by 904 

Suite2P110. These sources were manually curated to remove sources not corresponding to cells and those 905 

with artifacts (e.g., drifting fluorescence baseline) or low signal-to-noise ratio. For the calculation of dF/F0, 906 

F0 was estimated as the running median of the raw fluorescence signal from each source. dF was 907 

estimated by subtracting neuropil fluorescence from the source fluorescence to extract the fluorescence 908 

from a cell, Fcell, and then subtracting the baseline of Fcell (estimated by its running median). 909 

 910 

dF/F was deconvolved by OASIS AR1111, which models each fluorescence transient as a spike of an 911 

instantaneous increase followed by an exponential decay, whose decay constant was fitted to each cell. 912 

The deconvolved signal was sparse in time and varied in magnitude in units of dF/F. For each imaging 913 

frame (35 ms bin), the deconvolved signal was binarized into a spike if the signal magnitude was greater 914 

than zero, or no spike otherwise. 915 

 916 

Researcher Degrees of Freedom 917 

Before data collection, we pre-specified locations of optogenetics inhibition and the groupings of locations 918 

into areas for pooled analysis based on the Allen Mouse CCF. Because our study was exploratory, we did 919 

not pre-specify hypotheses to be tested, location of imaging, data analysis methods, statistical tests, 920 

indexes, or metrics. We did not pre-specify the number of mice or cells to be collected, but the collected 921 

data size was comparable to or larger than previous studies from our lab. For the optogenetics 922 

experiments, data collection typically continued as long as the mice maintained accurate performance on 923 

control trials (greater than ~90%). For the two-photon calcium imaging experiments, data collection 924 

typically continued while GCaMP6s was expressed at an optimal level (~2-10 weeks after viral injection) 925 

and terminated with its overexpression, which was detected by GCaMP6s expression in the nucleus of 926 

several cells in fields-of-view. We excluded mice from the experiments if they did not progress to the final 927 

stage of the training to perform the delayed match-to-sample task with reasonable accuracy (greater than 928 

~80% correct). We excluded imaging sessions from the analyses if the imaged area was outside of the 929 

areas of interest or if the mouse performed with low accuracy (less than ~70% correct). We excluded cells 930 

from the GLM-based analyses if the model fit did not converge (typically due to temporally sparse activity). 931 

1–16% of cells were excluded in V1, RSC, MM, and A. The number and fraction of cells included for each 932 

analysis are reported in the figure legends. 933 

 934 

Statistical Analysis 935 

Bootstrap methods were used to compute standard errors and to perform statistical tests unless noted 936 

otherwise. The bootstrap methods were performed by resampling the pooled data with replacement 104 937 
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times. For statistical tests on behavioral performance in the optogenetics experiments (Fig. 1g-m), 938 

trials were pooled across sessions for each photostimulated area (a) (or control) and for each mouse (i) 939 

and bootstrapped to compute the weighted average performance Pa. For statistical tests on the activity 940 

of individual cells (Figs. 3-4), cells were pooled across sessions and mice for the same imaged area and 941 

bootstrapped, unless noted otherwise. For statistical tests on the activity of simultaneously imaged 942 

populations (Fig. 5), cells were pooled on each session and bootstrapped. 943 

944 

We computed p-values for the difference across conditions as in two-tailed tests because the variable of 945 

interest could be larger or smaller across conditions (e.g., areas). Specifically, we computed the fraction 946 

of resampling that generated the statistic above (p+) or below (1–p+) the null hypothesis (zero difference). 947 

Then the smaller of the two fractions was multiplied by two to yield the p-value. The threshold for 948 

statistical significance was set at 𝛼 = 0.05. The significance threshold was adjusted for multiple 949 

comparisons by Bonferroni correction, unless noted otherwise. The sample size (n), p-values, and 950 

statistical significance are reported in the Figure legends. 951 

952 

Choice Biases 953 

Choice biases were measured for color (i.e., turns toward a black or white T-arm) and direction (i.e., turns 954 

toward a right or left T-arm) (Supplementary Fig. 1h). For each session, let PX/Y denote the task 955 

performance (% correct) on a trial type with X sample cue and Y test cue. Then, biases were measured by 956 

the following indices: 957 

958 

Color bias index: 959 

(Eq. 1) 

960 

Direction bias index: 961 

(Eq. 2) 

962 

Each index can range from 0 to 1, where 0 indicates no bias and 1 indicates that all choices were made for 963 

a particular color or direction. Because the mice in some sessions showed running direction biases based 964 

on the identity of the sample cue (Fig. 1d-e, Supplementary Fig. 1k) prior to the test cue onset, the mice 965 

could show different direction biases for different sample cues (e.g., turning more to the right on black 966 

sample cue trials and more to the left on white sample cue trials). To measure such a bias, we calculated 967 

the direction bias index conditioned on the sample cue (Supplementary Fig. 1h), which can also range 968 

from 0 to 1, as follows: 969 

970 

na,i

(PB/WB + PB/WB )− (PW /BW + PW /WB )
(PB/WB + PB/WB )+ (PW /BW + PW /WB )

(PB/WB + PW /BW )− (PB/BW + PW /WB )
(PB/WB + PW /BW )+ (PB/BW + PW /WB )
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Direction bias index conditioned on the same sample cue: 971 

(Eq. 3) 

972 

973 

Behavioral effects of optogenetics inhibition 974 

Task performance (% correct) in Fig. 1g-m was computed by pooling behavioral results from all mice (n = 975 

4 or 7 mice for inhibition throughout a trial or inhibition in specific segments, respectively). For given 976 

inhibition areas a (either a bilateral pair or area), we computed the task performance for each mouse, Pa,i, 977 

where i is an index for mice. Because the number of inhibition trials for give areas, na,i, was different across 978 

mice, the average performance across m mice was weighted based on the number of trials as follows : 979 

, where the weight for the i-th mouse was given by . Similarly, the 980 

change in the task performance associated with the inhibition was computed by 981 

, where  and  are the task performance during inhibition and 982 

983 

984 

985 

986 

987 

988 

989 

990 

991 

992 

993 

994 

995 

996 

997 

998 

999 

1000 

1001 

1002 

control trials for the i-th mouse, respectively. 

Decoding task variables from running patterns 

1003 

1004 

1
2
PB/WB − PB/BW
PB/WB + PB/BW

+
PW /BW − PW /WB
PW /BW + PW /WB

⎛

⎝
⎜

⎞

⎠
⎟

Pa = wa,i ⋅
i

m

∑ Pa,i wa,i = na,i / na,k
k

m

∑

ΔPa = wa,i ⋅
i

m

∑ (Pa,i − Pcontrol ,i ) Pa,i Pcontrol ,i

Task variables were decoded from running patterns of mice to assess whether and when they varied with 
task variables. The running velocity was measured around the three rotation axes and z-scored. For 
decoding of the sample cue in the delay segment, the sample cue identity (black or white) was decoded 
from the mean z-scored velocity during the last 10 frames (~350 ms) in the delay segment (Fig. 1e, 
Supplementary Fig. 1k). For decoding of choice in the test segment (Supplementary Fig. 1i-j), because the 
running patterns could depend on the sample cue identity prior to the test segment (Fig. 1e, 
Supplementary Fig. 1k), the choice (right or left) was decoded separately from trials with each identity of 
the sample cue. The choice for a given timepoint in the test segment was decoded from the mean z-scored 
velocity in the previous 10 frames (~350 ms), including frames from the delay segment. 

Decoding was performed by first fitting a model using trials in a training set (80% of trials), and then 
predicting the task variable from the running patterns in trials in a test set (20% of trials), cycling through 
5 splits of test/training sets. Because both the sample cue and choice were binary variables (A or B), the 
logit, log[P(A)/P(B)], was fitted by a weighted sum of the mean z-scored velocity by a logistic regression. 
Regularization and cross validation were used for fitting, following a similar procedure for fitting neural 
activity (see below). The identity of task variables was predicted for trials in the test set such that A was 
predicted if log[P(A)/P(B)] > 0, and B was predicted otherwise. The decoding accuracy was the fraction of 
trials in which the predicted identity matched the observed identity in the experiment. 
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1005 

1006 

Predicting choice from task variables and running patterns 
The explanatory power of the task variable and running patterns on the mouse’ choices was evaluated by 
a logistic regression. For Figure 1e, the probability of turning to choose the white side of the test cue, 1007 

, was fitted by the presented sample cue’s identity, , and decoded sample cue’s identity, , based 1008 

on the mouse’s running patterns at the end of the delay segment as follows: 1009 

1010 

(Eq. 4) 

1011 

We sampled an equal number of white-chosen and black-chosen trials and used L2-regularization with 1012 

10-fold cross validation. If the mouse showed similar running patterns between trials with the black- and1013 

white-sample cues, β1 would be larger than β2. In contrast, if the mouse showed variable but distinct1014 

running patterns that predicted the choices, as in the case of relying on the running mnemonic, β2 would1015 

be larger than β1.1016 

1017 

Calculation of the mean and normalized activity across cells 1018 

Deconvolved neural activity was first smoothed by a moving average of 10 frames (350 ms) and then 1019 

aligned to the start and end of the sample segment, start and end of the delay segment, start of the test 1020 

segment, and T-intersection. In each segment, neural activity was plotted for the first and last parts of the 1021 

segment (sample segment: first 1.2 s and last 1.2 s, delay segment: first 0.3 s and last 0.3 s, test segment: 1022 

first 2 s and last 1.5 s prior to T-intersection, T-arm: 1.5 s after the T-intersection). For each cell, neural 1023 

activity was averaged across all trials, and then the mean activities for individual cells imaged in a specific 1024 

area (across sessions and mice) were averaged to compute the mean activity for the area (Fig. 2c). For a 1025 

plot of sequential activity across cells (Fig. 2d), on each cell, activity was averaged across trials and the 1026 

average activity at each time point was divided by the peak average activity across analysis time windows. 1027 

Cells were then sorted in the order of peak time. The sequence of activity was cross-validated by plotting 1028 

activity on even-numbered trials sorted by peak time on odd-numbered trials. For the average activity of 1029 

example cells (Fig. 2e-j, Supplementary Fig. 3), the activity was smoothed by running window of 350ms 1030 

(10 imaging frames), aligned to the start and end of each segment, and averaged for each trial type 1031 

separately for correct and error trials. 1032 

1033 

Generalized Linear Model 1034 

We used a generalized linear model (GLM) to model the time-dependent effects of experimentally 1035 

measured variables, including those related to the task and the mouse’s behavior, on the single trial 1036 

activity of each neuron35,58,112,113. Figure 2k illustrates our GLM in a schematic diagram. We used a Poisson 1037 

GLM, whose output predicts a distribution of single neuron spike counts at each moment in trials. 1038 

1039 

The objective of our GLM is to fit the model output about the distribution of spike counts to the observed 1040 

distribution of a single cell activity. The mean spike count of the Poisson GLM, µ, was related to the 1041 

weighted sum of predictors (𝛸𝛽) by an exponential link function µ = exp(𝛸𝛽). We will describe below (i) 1042 

Pwhite S Ŝ

log
Pwhite
1− Pwhite

= β0 + β1S + β2Ŝ
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the design of predictors (𝛸), (ii) regularized fitting procedure to determine the weights (𝛽 coefficients), 1043 

and (iii) evaluation of model performance based on the explanatory power. 1044 

 1045 

Predictors 1046 

The predictors were divided into the task variable set (124 or 248 predictors) and the running variable set 1047 

(39 predictors).  1048 

 1049 

The task variable set consisted of 8 subsets: offset (O), sample cue (S), test cue (T), choice (c), and the 1050 

interactions between S, T, and C (S*T, T*C, S*C, S*T*C). S, T, and C were binary variables: +1 (or -1) was 1051 

assigned to white (or black) for the sample cue, BW (or WB) for the test cue, and right turn (or left turn) 1052 

for the choice (Fig. 2k). Note that the interaction S*T represents XOR on the sample cue identity and test 1053 

cue identity and is equivalent to choice identity (C) on correct trials. Only the first 4 subsets (O, S, T, C) 1054 

were used to fit correct trials in 4 trial types (4 conditions) in Figure 3. All 8 subsets were used to fit both 1055 

correct and error trials in 4 trial types (2 x 4 = 8 conditions) in Figure 4. Because each cell tended to have 1056 

activity in a specific part of the maze (Fig. 2d), each subset comprised 31 spatially tuned predictors that 1057 

collectively covered the entire maze length, yielding 31 x 4 = 124 or 31 x 8 = 248 predictors for the task 1058 

variable set. Similarly to a previous study 35, the spatial tuning of each cell was expanded using raised 1059 

cosine basis functions with a width of 40 cm, 1060 

 1061 

 (Eq. 5) 

 1062 

and its center peak was either positive (+1) or negative (-1) based on the identity of a binary task variable 1063 

(V), which denotes either the sample cue, test cue, choice, or their interactions. The center peaks  were 1064 

spaced with a 20 cm interval to tile the maze with a half-width overlap.  1065 

 1066 

The running variable set consisted of 3 subsets corresponding to the roll, pitch, and yaw velocity. For each 1067 

component of velocity, the velocity was z-scored and bounded from -3 to 3. We assumed that the 1068 

movement selectivity was invariant across maze position, so that movement predictors are functions of 1069 

the z-scored velocity (z), but not on the maze position. The shape of velocity tuning followed one cycle of 1070 

a raised cosine function with a width of 1 in z-scored velocity, 1071 

 1072 

 (Eq. 6) 

 1073 

We included 13 predictors for each velocity component whose centers spanned from -3 to 3 with a spacing 1074 

of 0.5 along z-scored velocity, yielding 13 x 3 = 39 predictors for the running variable set. 1075 

f (x) =
V ⋅ 1
2
1+ cos(2π ⋅

(x − xc )
40

)
⎡

⎣
⎢

⎤

⎦
⎥ , if xc − 20 < x < xc + 20

0, otherwise

⎧

⎨
⎪

⎩
⎪

xc

g(z) =
1
2
1+ cos(2π ⋅(z − zc ))⎡⎣ ⎤⎦ , if zc − 0.5< z < zc + 0.5

0, otherwise

⎧
⎨
⎪

⎩⎪
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 1076 

Regularized fitting procedure 1077 

For each imaging session, the GLM was fitted to the neural activity in 80% of the trials in the training set, 1078 

whereas the data in the rest of the 20% of the trials were used to evaluate the fit quality and encoded 1079 

information in individual cells (see below). Trials were divided into five subsets with the same number of 1080 

trials per condition (defined by the combination of the sample cue, test cue, and choice; 2 x 2 x 2 = 8 1081 

conditions). Four subsets were used as the training set and the remaining one subset was used as the test 1082 

set. We cycled through 5 splits of test/training set to evaluate all appropriate trials in the session. 1083 

 1084 

Given the model output of the expected spike counts, µ = exp(𝛸𝛽), the likelihood of observing spike 1085 

counts, r, follows a Poisson distribution: P(r|µ) = µr exp(–µ)/r!. The weights 𝛽 = [𝛽0 .. 𝛽M] were fitted to 1086 

the data by minimizing the following objective function with glmnet package in R with elastic-net 1087 

regularization114:  1088 

 1089 

 (Eq. 7) 

 1090 

Here i is an index for the imaging frame, N is the total number of frames in the training data, j is an index 1091 

for beta coefficients, and M is a total number of beta coefficients without 𝛽0 (M = 124 or 248 for full 1092 

model). ri is the neural activity in the i-th frame calculated by the sum of estimated spike counts in 1093 

neighboring 10 frames ([i-5 .. i+4] th frames spanning ~350 ms). xi is a set of values (i.e., a vector) of M 1094 

predictors for the i-th frame, 𝛽 is a vector of M beta coefficients for the cell. We used L1-like regularization 1095 

with 𝛼=0.95, which tends to explain responses with a smaller number of large beta coefficients (as 1096 

opposed to a large number of small beta coefficients for L2 regularization with 𝛼≈0).  1097 

 1098 

The regularization parameter, 𝜆, sets the tradeoff between the fitting error (the first term in Eq 7) and the 1099 

model complexity (the second term in Eq 7). The value of 𝜆 was chosen from a set of 𝜆 values by 10 fold 1100 

cross validation, where each fold had an equal number of trials per condition (as in the training/test splits 1101 

described above). For each value of 𝜆, we computed 10 instances of the fitting error (deviance) from the 1102 

cross validation and computed their mean, 𝜇𝜆, and standard deviation, 𝜎𝜆 (i.e., standard error of the 1103 

deviance). We found the	𝜆min that produced the minimum deviance 𝜇𝜆min, and	𝜆1se that produced the most 1104 

regularized model whose mean deviance was within one standard error from the minimum deviance, 1105 

. We used 𝜆1se to fit the model to all trials in the training set, and obtained 1106 

fitted beta coefficients, 𝛽1se, which were used to predict responses for trials in the test set and to evaluate 1107 

information for task variables (Figs. 3-4, see below).  1108 

 1109 

Because the number of correct trials was greater than error trials, the imbalance in the number of trials 1110 

could bias the fitting procedure to depend more on correct trials than on error trials. To compensate for 1111 

this imbalance, we adjusted the weight of each trial during the fit. Specifically, on each trial with a specific 1112 

− 1
N

ri(β0 + β
T ⋅ xi )− exp(β0 + β

T ⋅ xi )⎡⎣ ⎤⎦
i=1

N

∑ + λ α |β j |
j=1

M

∑ + (1−α )
β j
2

2j=1

M

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

argmax
λ∈[λmin,∞]

(µλ < µλmin +σ λmin )
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trial type and trial outcome (correct or error), the fitting error of that trial was multiplied by the inverse 1113 

of the total number of trials with the same trial type and outcome during the session. Results were 1114 

qualitatively consistent with and without this balancing for differences in trial numbers.  1115 

 1116 

Evaluation of model performance 1117 

The model performance was evaluated by the fraction of the deviance explained (FDE) on the test data 1118 

set (Fig. 2l-m). FDE quantifies the performance of the fitted GLM on the test data with respect to the null 1119 

and saturated (sat) models. For each time point in the test data, the null model predicts the same 1120 

expected activity, which is given by the activity of a cell averaged across all time points in the training 1121 

data. In contrast, the saturated model predicts the expected activity that exactly matches the observed 1122 

activity at each time point in the test data. Let LGLM, Lnull, and Lsat be the likelihood of observing the test 1123 

data given the GLM, null, and saturated model, respectively. Then, the deviance (D) and the FDE are 1124 

defined as follows. 1125 

 1126 

 (Eq. 8) 

 1127 

 (Eq. 9) 

 1128 

Thus, FDE =1 indicates that the model prediction was as good as the saturated model, whereas FDE = 0 1129 

indicates that the model prediction was as poor as the null model.  1130 

 1131 

Single cell information 1132 

We used the GLM fitted to the training data to compute the single-trial information for each cell about 1133 

each task variable in each trial in the test data. We first describe the derivation of sample cue information 1134 

below, and this derivation extends easily to test cue information and XOR information. Given that the 1135 

activity of a cell at time t in a given trial had a value of r(t), we used the Poisson GLM to compute the 1136 

likelihood that the observed activity was generated either in the presence of a white sample cue (S = +1) 1137 

or a black sample cue (S = -1). Then, the single-trial information was computed as the log likelihood ratio 1138 

(logLR)61,62,115:  1139 

 1140 

 (Eq. 10) 

 1141 

The logLR monotonically varies with the likelihood ratio, its sign indicates whether white (positive) or black 1142 

(negative) was more likely, and its magnitude (absolute value) quantifies its informativeness. Because the 1143 

Dnull = 2(Lsat − Lnull )
DGLM = 2(Lsat − LGLM )

⎧
⎨
⎪

⎩⎪

FDE =
Dnull − DGLM
Dnull

=
LGLM − Lnull
Lsat − Lnull

log
P(r(t) | S = 1)
P(r(t) | S = −1)
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running patterns of the mice can covary with the task variable identities (Fig. 1e, Supplementary Fig. 1k) 1144 

and influence the neural activity18,59,116, we controlled for running variability to derive “genuine” sample 1145 

cue information by computing the log likelihood also conditioned on the running velocity as follows.  1146 

 1147 

 (Eq. 11) 

 1148 

 1149 

To compute the likelihood of the given sample cue, we marginalized over all possible combinations of the 1150 

remaining task variables (i.e., test cue and choice in this case).  1151 

 
(Eq. 12) 

 1152 

 1153 

Note that P(T,C|S=1) was approximated by Pc/2 or Pe/2, where the Pc and Pe denote the proportion of 1154 

correct trials and that of error trials, respectively. 1155 

 1156 

In a similar fashion, test cue information was computed as: 1157 

 1158 

 (Eq. 13) 

 1159 

 1160 

For logLR of XOR, the likelihood was marginalized over the combinations of the sample cue and test cue 1161 

that were associated with the same direction of reward assignment (e.g., XOR = 1 consists of [S=1, T=1] 1162 

and [S=-1, T=-1]). Thus, its logLR was calculated as follows. 1163 

 1164 

 (Eq. 14) 

 1165 

Note that the logLR is a signed value, where its sign indicates whether the activity supports one identity 1166 

of the task variables or the other. For example, cells with the sample cue selectivity tend to show positive 1167 

logLR for trials with S = +1 (white sample cue) and negative logLR for trials with S = -1 (black sample cue). 1168 

As a result, if we simply average the logLR across all trials, they would cancel out and fail to detect the 1169 

sample cue information. Therefore, we adjusted the sign of logLR, so that a positive logLR indicated that 1170 

log
P(r(t) | S = 1,V (t))
P(r(t) | S = −1,V (t))

P r(t) S = 1,V (t)( ) = P(r(t) | S = 1,T ,C,V (t)) ⋅
T∈−1,1 C∈−1,1
∑ P(T ,C | S = 1,V (t))

≈ P(r(t) | S = 1,T ,C,V (t)) ⋅
T∈−1,1 C∈−1,1
∑ P(T ,C | S = 1)

= P(r | S = 1,T = −1,C = −1) ⋅Pc / 2+ P(r | S = 1,T = −1,C = 1) ⋅Pe / 2+ P(r | S = 1,T = 1,C = −1) ⋅Pe / 2+ P(r | S = 1,T = 1,C = 1) ⋅Pc / 2
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the neural activity correctly encoded the task variable identity observed in the trial. In contrast, a negative 1171 

logLR indicated incorrect encoding of the task variable identity. Specifically, when the observed task 1172 

variable identity was -1 in Equations 11-14, we multiplied the logLR by -1. In the results, we used the sign-1173 

adjusted logLR (Figs. 3-5, Supplementary Figs. 4-6). 1174 

 1175 

Population information and decoding 1176 

Population information was derived similarly to single cell information, except that a single cell activity 1177 

r(t) was replaced by a vector of population activity, r(t), which was imaged simultaneously on each session 1178 

within a given field-of-view (~0.5 mm2 area). Under the assumption of conditionally independent noise 1179 

across cells, the likelihood of observing a population activity r(t) was calculated as follows: 1180 

 1181 

 (Eq. 15) 

 1182 

where i is an index for a cell in a population of n cells. Combining Equations 14 and 15 yields population 1183 

XOR information as follows:  1184 

 1185 

 
(Eq. 16) 

 1186 

 1187 

 1188 

The population information was derived using all cells in each imaging sessions (Fig. 5), or a subpopulation 1189 

with the same number of cells (n = 100 cells, randomly sampled from the population, Supplementary Fig. 1190 

5).  1191 

 1192 

The identity of the task variable was decoded from population activity based on the sign of population 1193 

information (logLR). When logLR was zero, the decoded identity was randomly assigned. On each session, 1194 

the accuracy of the population coding was evaluated by mutual information between the true and 1195 

decoded identity of the task variable. The weighted average of mutual information was reported by 1196 

averaging across sessions with weights proportional to the number of trials on the sessions (Fig. 5b,d, 1197 

Supplementary Figs. 5a,c, 6d). 1198 

 1199 

Signal and noise correlation 1200 
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For each pair of cells recorded simultaneously, the signal correlation was quantified by Pearson’s 1201 

correlation on their mean neural activity across four trial types. To compute the noise correlation for each 1202 

pair, the residual neural activity was derived for each cell on each trial type, by subtracting the mean 1203 

activity on each trial type from the observed activity on that trial type. The noise correlation was 1204 

quantified by Pearson’s correlation on the residual activity of the pair of neurons combined across all trials 1205 

in all trial types. To evaluate the effect of noise correlation on the accuracy of the population code, the 1206 

noise correlation was disrupted by shuffling the trial identity within each trial type separately for correct 1207 

and error trials. Trial shuffling was repeated 10,000 times to estimate the standard error of decoding 1208 

accuracy. 1209 

 1210 

Simulation of population activity 1211 

To compare the efficiency and accuracy of encoded information between a population of mixed selectivity 1212 

cells and a population of pure selectivity cells, we generated population activity by Monte-Carlo 1213 

simulation and analyzed the simulated data similarly to the real imaging data. The number of spikes 1214 

generated by each cell follows a Poisson distribution with the mean λ. Each cell responds to a preferred 1215 

cue (or a preferred combination of cues) with the mean of λpref and to an unpreferred cue with the mean 1216 

of λunpref, where λpref is greater than λunpref by design. The minimum unit population size was a set of four 1217 

cells, each of which preferentially responds to a specific trial type in the mixed selectivity population, or 1218 

to a specific sample cue or test cue identity in the pure selectivity population (Supplementary Fig. 7a). In 1219 

our simulation, we varied the population size by adding N sets of the unit population and varied the level 1220 

of noise correlations across cells. Because the noise correlations were mostly observed for cells with a 1221 

higher signal correlation (Supplementary Fig. 6a-c), the simulation included positive noise correlation only 1222 

between cells that shared the same selectivity. To introduce noise correlations across n cells, our 1223 

simulation first generated a set of n Gaussian-distributed random variables with an n-by-n correlation 1224 

matrix using compularnd.m in MATLAB (MathWorks), and then correlated Poisson-distributed random 1225 

variables were generated by the inverse CDF sampling technique117 using poissinv.m in MATLAB 1226 

(MathWorks). Population decoding was performed by following the decoding method for the real imaging 1227 

data as described above. The total of 10,000 trials were simulated 10,000 times for each set of free 1228 

parameters to estimate the mean and standard error of the decoding accuracy. 1229 

 1230 

Analyses conditioned on the cue information  1231 

To evaluate the ratio of information for the sample cue vs. test cue across individual cells, the two types 1232 

of information represented in the cartesian coordinates (Figs. 3g, 4h) were converted to polar coordinates 1233 

(Figs. 3h-l, 4i-j). For the analyses that are conditioned on the polar angle (Figs. 3h-l, 4i-j, 5, Supplementary 1234 

Figs. 4-6), cells with zero or noise-level information (|logLR| < 𝜀) were excluded from the analyses because 1235 

their angle could not be reliably estimated. The noise level 𝜀 was set to 0.01. The skewness of the angle 1236 

distribution of cells was calculated without cells with extreme angles (the highest and lowest 1% of cells) 1237 

because the skewness is sensitive to outliers. To show the angle distribution of cells, histograms were 1238 

created by discretizing the angles into 7 bins (Figs. 3i, 4i). Bins for cells with only sample cue information 1239 

or test cue information (𝜃	= 0˚ and 𝜃	= 90˚) included cells within a chance-level deviation from the two 1240 

axes. The chance-level deviation was logLR of 0.017 for V1, 0.007 for RSC, and 0.005 for MM, inferred for 1241 
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each cortical area by one standard deviation of the test cue information averaged across the last 1 s (30 1242 

frames) in the sample segment (i.e., prior to the appearance of the test cue). For the evaluation of 1243 

population information (Fig. 5, Supplementary Fig. 5-6), cells in the bins for 𝜃	= 0˚ and 𝜃	= 90˚ with less 1244 

than the chance-level magnitude of XOR information (Fig. 4i, correct trials) were defined to have pure 1245 

selectivity to the sample cue and test cue, respectively, whereas cells with 15 <𝜃 < 75 (Fig. 4h, correct 1246 

trials) were defined to have mixed selectivity. Similarly, pure XOR selective cells were defined to have XOR 1247 

information greater than logLR of 0.01 and less than the chance-level magnitude of the sample and test 1248 

cue information (Supplementary Fig. 4i-j). 1249 

 1250 

Comparison of XOR information for correct vs. error trials 1251 

We tested whether XOR information between correct and error trials was different conditioned on the 1252 

same amount of preexisting sample cue information (Fig. 4k). Trials were binned according to their sample 1253 

cue information at the end of the delay segment (bin size = 0.01 logLR). The mean XOR information for 1254 

correct and error trials was calculated by averaging over trials within a bin,  1255 

and , where Nc and Ne are the number of correct and error trials within the 1256 

bin (combined across sessions), respectively;  and  are the mean XOR information 1257 

across all cells in a session for the i-th correct and j-th error trials within the bin, respectively.  1258 

and  were computed 104 times by bootstrapping on trials, and the statistical significance of their 1259 

difference was tested against a null hypothesis . For comparison of two areas (A and 1260 

B), we tested whether area A showed a larger difference in XOR information between correct vs. error 1261 

trials than area B.  was computed for the two areas A and B, denoted as 1262 

 and . The statistical significance of their difference was tested against a null 1263 

hypothesis  by bootstrapping on trials. 1264 

 1265 

Sparsity index  1266 

For a model-free evaluation of the neural selectivity to a specific trial type, the sparsity index was 1267 

calculated for individual cells (Fig. 3k, Supplementary Fig. 4g). Let r = [r1 .. r4] denote the estimated spike 1268 

counts averaged across trials within each of the 4 trial types. Then, r was multiplied by a normalization 1269 

factor, , so that the average of [kr1 .. kr4] was 1 (and the sum was 4). The sparsity index was 1270 

defined as the maximum of the normalized activity: 1271 

 1272 

SI = max([kr1, kr2, kr3, kr4])         (Eq 17) 1273 

 1274 

I{XOR,cor} =
1
Nc

Ii,{XOR,cor}
i

Nc

∑

I{XOR,err} =
1
Ne

I j ,{XOR,err}
j

Ne

∑
Ii, XOR,cor{ } I j , XOR,err{ }

I{XOR,cor}

I{XOR,err}

I{XOR,cor} = I{XOR,err}

Δ I{XOR} = I{XOR,err} − I{XOR,cor}

Δ I A,{XOR} Δ I B,{XOR}

Δ I A,{XOR} = Δ I B,{XOR}

k = 4 / ri
i=1

4

∑
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The index ranged from 1 to 4 as shown for example activity patterns in Figure 3m. The minimum index of 1275 

1 was assigned to cells that showed the same average activity across the four trial types (i.e., no trial type 1276 

selectivity). The maximum index of 4 was assigned to cells that showed activity only for a single trial type. 1277 

To compute the sparsity index for the test segment, the neural activity ri was calculated from the mean 1278 

estimated spike counts during the first 1 s (30 imaging frames) in the test segment on correct trials. 1279 

 1280 

Nonlinearity index 1281 

For evaluation of nonlinear mixing of information (or nonlinear mixed selectivity), the nonlinearity index 1282 

was calculated for individual cells (Fig. 3l, Supplementary Fig. 4h). Let rX/Y denote the neural activity for 1283 

the trial type with X sample cue and Y test cue. If a cell has linear mixed selectivity to sample cue and test 1284 

cue, the activity differences associated with the different test cues are the same regardless of the sample 1285 

cue (rB/BW – rB/WB = rW/BW – rW/WB). In contrast, if a cell has nonlinear mixed selectivity, these differences are 1286 

not equal. To quantify the degree of nonlinearity, the nonlinearity index (NI) was defined as: 1287 

 1288 

NI = |( krB/BW – krB/WB) - (krW/BW – krW/WB)|        (Eq 18) 1289 

 1290 

where k is the normalization factor used for the sparsity index (see above). The index ranged from 0 to 4 1291 

as shown for example activity patterns in Figure 3m. The minimum index of 0 was assigned to cells that 1292 

showed no trial type selectivity, pure selectivity, or linear mixed selectivity (top three panels in Fig. 3m). 1293 

The maximum index of 4 was assigned to cells that showed no activity for left-choice trials (rB/BW = 0 and 1294 

rW/WB = 0) or no activity for right-choice trials (rB/WB = 0 and rW/BW = 0), including cells that showed activity 1295 

only on a single trial type. To compute the nonlinearity index for the test segment, the neural activity, rX/Y, 1296 

was calculated from the mean estimated spike counts during the first 1 s (30 imaging frames) in the test 1297 

segment on correct trials. 1298 

  1299 
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Supplementary Fig. 1 | Behavioral performance of mice used for calcium imaging experiments
(a) An example session with high task performance. The raster plot shows trial types (first row) and the correctness of choice (second row). The width of 

rectangles and gaps between them indicate the length of trials and the inter-trial intervals, respectively. The running mean of task performance and pace 
were calculated in the preceding 20 trials, excluding crutch trials (see Methods). See marker legend in panel (g).

(b) Mean trial completion time for correct and error trials during the session in (a). Error bars indicate mean ± s.d. across trials. n = 179 correct / 16 error 
trials.

(c) Similar to panel (a), except for an example session with moderate task performance.
(d) Similar to panel (b), except for the session in (c). n = 163 correct / 44 error trials.
(e) Task performance and pace averaged across sessions. The solid and dashed lines indicate mean ± s.d. n = 63 sessions from 6 mice.
(f) Mean trial completion time for correct and error trials averaged across all sessions. Error bars indicate mean ± s.d. across sessions.
(g) Marker legend for panels (a-f).
(h) Choice bias for the color (choosing black vs white), direction (choosing right or left), and direction conditioned on the same sample cue (see Eq. 1-3 in 

Methods). Open circles show bias in individual sessions. Filled circles with error bars indicate median ± median absolute deviation. Filled triangles and 
diamonds indicate biases in the example sessions in panels (a-b) and (c-d), respectively. n = 63 sessions from 6 mice.

(i) Choice (final turn direction) decoded from the mouse’s running velocity in the test segment. Thin gray lines indicate individual sessions. Thick black line 
and shading indicates mean ± s.e.m. n = 63 sessions from 6 mice. 

(j) Similar to (i), plotted separately for correct and error trials. Shading indicates mean ± s.e.m.
(k) Task performance across sessions (dots) and mice (panels) compared to the decoding of the sample cue from the mouse’s running velocity at the end 

of the delay segment. Two mice were excluded due to small numbers of sessions (less than five sessions). rs indicates the Spearman rank correlation 
coefficient.
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Supplementary Fig. 2 | Photo-inhibition effects on spiking activity and the mouse’s running
(a) Electrophysiology trace from a putative excitatory cell in PPC of a VGAT-ChR2 mouse. Blue line indicates the photoinhibition (laser on). 
(b) Similar to panel (a), except for a putative inhibitory cell. 
(c) Spike waveforms for the example units shown in panels (a-b). The amplitudes were normalized to compare the spike width of a putative excitatory cell 

(black) and inhibitory cell (red). Thin lines indicate individual spikes. Thick lines indicate mean waveforms.
(d) Normalized spike counts (first five seconds from laser onset) as a function of horizontal distance from the laser center during photoinhibition in PPC. 

Spike counts were normalized to the period just before laser onset. Error bars indicate mean ± s.e.m. across trials. n = 11.8 ± 6.2 trials (mean ± s.d.) per 
data point from one mouse.

(e) Similar to panel (d) except for RSC.
(f) Similar to panel (d) except for M2.
(g) Normalized spike counts as a function of cortical depth in PPC. Spikes were recorded within 500 µm horizontal distance from the laser center. n = 13.6 ± 11.2 

trials (mean ± s.d.) per data point from one mouse.
(h) Similar to panel (g) except for RSC.
(i) Similar to panel (g) except for M2.
(j) Comparison of the mouse’s forward running velocity in the sample segment on control trials and trials with inhibition in all segments. Each open circle 

indicates the average forward velocity of a single mouse on trials with a bilateral pair of inhibition sites (or three bilateral pairs of inhibition sites for 
the RSC expanded inhibition) and the average forward velocity on control trials. Data from each mouse are plotted vertically at the control-trial velocity 
unique to that mouse. Inhibition sites are grouped for different areas as shown in Figure 1l. Error bars within open circles indicate mean ± s.e.m. across 
trials. n = 39 inhibition groups from 11 mice for panels (j-l)

(k) Similar to panel (j) except for the forward velocity in the delay segment.
(l) Similar to panel (j) except for the forward velocity in the test segment.
(m) Similar to panel (j) except for the forward velocity in trials with inhibition only in the sample segment. n  = 23 inhibition groups from 7 mice for panels 

(m-o).
(n) Similar to panel (k) except for the forward velocity in trials with inhibition only in the delay segment.
(o) Similar to panel (k) except for the forward velocity in trials with inhibition only in the test segment.
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Supplementary Fig. 3 | GLM with various levels of explanatory power for example cells
(a) Observed neural activity and GLM fit for an example V1 cell. Left panels: observed neural activity plotted similarly to Figure 2e-j. Right panels: regularized 

GLM fits to the training data. Shading indicates mean ± s.e.m. The predictive power of the model was quantified by the fraction of deviance explained 
(FDE) indicated at the top.

(b) Similar to panel (a) for an example MM cell.
(c) Similar to panel (a) for an example MM cell in Figure 2g.
(d) Similar to panel (a) for an example RSC cell in Figure 2i.
(e) Similar to panel (a) for an example V1 cell with low activity and selectivity.
(f) Similar to panel (a) for an example RSC cell with low activity and selectivity.
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Supplementary Fig. 4 | Task-related information and its mixing in V1, RSC and MM
(a) Task performance averaged across imaging sessions for each area. Error bars indicate mean ± s.d. V1: n = 11 sessions, RSC: n = 12 sessions, MM: n = 7 

sessions, A: n = 5 sessions, M1: n = 3 sessions, M2: n = 9 sessions were included in panels (a-b). Average task performance was not significantly different 
between two areas except for M1 and V1 (p = 0.0018) and M1 and RSC (p = 0.0011). The significance threshold was adjusted by Bonferroni correction 
with 𝛼 = 0.05 to account for 15 between-area comparisons for panels (a-b). 

(b) Delay length averaged across imaging sessions for each area. Error bars indicate mean ± s.d. Average task performance was not significantly different 
between two areas except for A and V1 (p = 0.0010), A and M1 (p = 0.0001), and A and M2 (p<10-4).

(c) Sample cue information in the sample segment and delay segment for individual cells (dots). Cells along the horizontal axis (0 degrees) had sample cue 
information only in the sample segment, and cells along the vertical axis (90 degrees) had sample cue information only in the delay segment. 

(d) Data from panel (c) replotted in polar coordinates as the magnitude (r) and angle (θ). The absence of many cells around 45 degrees indicates that few 
cells had sample cue information in both the sample and delay segments. Rather, different populations of neurons, especially in RSC, appeared to contain 
sample cue information in the different segments.
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(e) Distribution of cells from panel (d). Bins for θ = 0 and θ = 90 include cells with chance-level deviation from the axes (Methods). Error bars indicate 
mean ± s.e.m. The fractions of cells with noise-level information (magnitude r < 0.01) are not shown. 

(f) XOR information for cells across angles (running average, window of 50 cells), shown separately for V1, RSC, and MM. Shading indicates mean ± s.e.m.
(g) Sparsity index for cells across angles (running average, window of 50 cells), shown separately for V1, RSC, and MM as black traces. Blue traces show 

chance sparsity index values computed with shuffled trial identities. Shading indicates mean ± s.e.m. 
(h) Similar to panel (g), except for the nonlinearity index.
(i) XOR information versus the magnitude of the sample cue and test cue information in the first one second of the test segment for individual cells (circles). 

Only correct trials were included in the analysis. Cells with pure XOR selectivity have high XOR information but zero sample cue information and zero test 
cue information. For correct trials, a pure XOR selective cell or a pure choice selective cells might be active on both W/WB and B/BW trial types. Such a 
cell is thus active on trials with both sample cues and both test cues and thus lacks sample cue and test cue information. 

(j) Cumulative fraction of cells as a function of the magnitude of a cell’s sample cue and test cue information. Pure XOR selective cells were defined to have 
XOR information greater than logLR of 0.01 and the magnitude of sample cue and test cue information less than the chance level (logLR of 0.017 in V1, 
0.007 in RSC, 0.005 in MM, see Methods). Cells were excluded from the analysis if they had XOR information less than logLR of 0.01. The fraction of pure 
XOR selective cells was 7.7 ± 1.6% in V1, 16.0 ± 1.1% in RSC, and 13.2 ± 1.8% in MM (mean ± s.e.m.).

(k) Similar to panel (c), except for XOR information in the first one second of the test segment versus the maximum sample cue information in the sample or 
test segment. Cells in the first quadrant (0° < θ < 90°) or on the vertical axis (90°) had XOR information in the test segment with or without having sample 
cue information in the sample or delay segment. 

(l) Similar to panel (e), except for summarizing the data in panel (k).
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Supplementary Fig. 5 | XOR information in populations of mixed selectivity or pure selectivity cells, controlling for the population size
(a) Similar to Fig. 5b, except for a population size of 100 cells. Mutual information between true and decoded XOR in populations of mixed selectivity cells 

(15 ˚< θ < 75˚ in Fig. 4h, correct trials) and pure selectivity cells (θ = 0˚ and θ = 90˚ in Fig. 4i, correct trials) is shown. From the entire population imaged 
during each session, 100 cells were randomly sampled without replacement. The analyses included sessions with more than 100 detected cells. V1: n = 8 
sessions (1783 trials), RSC: n = 12 sessions (1685 trails), MM: n = 7 sessions (1230 trials), A: n = 5 sessions (822 trials). Error bars indicate mean ± s.e.m. 
across trials. Mutual information in mixed selectivity cells was significantly greater than that in pure selectivity cells in V1 (p=0.0022), RSC (p < 10-4), MM 
(p=0.0002), but not in A (p = 0.10).

(b) Similar to Fig. 5c, except for a population size of 100 cells. Number of cells classified as mixed selective or pure selective (T = test cue selective; S = sample 
cue selective) per session is shown. Error bars indicate mean ± s.e.m. The number of cells was significantly larger for pure selective cells than for mixed 
selective cells across areas in V1 (p < 10-4), MM (p = 0.023), and A (p = 0.027), but not in RSC (p = 0.93).

(c) Similar to Fig. 5d, except for a population of 100 cells. Mutual information between true and decoded XOR on correct and error trials is shown. Error 
bars indicate mean ± s.e.m. V1: n = 1062 correct / 272 error trials, RSC: n = 1420 correct / 265 error trials, MM: n = 1009 correct / 221 error trials, A: 
n = 753 correct / 69 error trials. For mixed selectivity cell population, the difference between correct and error was significantly different from zero in 
all four areas (V1: p < 10-4, RSC: p < 10-4, MM: p = 0.0008, A = 0.028). For pure selectivity cell population, the difference between correct and error was 
significantly different from zero in A (p = 0.028), but not in V1 (p = 0.60), RSC (p = 0.87), and MM (p = 0.35). The difference between correct and error in 
mixed selective cells was significantly larger than that for pure selective cells in V1 (p < 10-4), RSC (p < 10-4), and MM (p=0.0010), but not in A (p = 0.82). 
The difference between correct and error in mixed selective cells was significantly larger in RSC than in MM (p = 0.021) or A (p < 10-4), but the difference 
was not significant between RSC and V1 (p = 0.22).
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Supplementary Fig. 6 | Noise correlations in populations of mixed selectivity or pure selectivity cells
(a) Signal and noise correlations in neural activity of mixed selectivity cells (15 ˚< θ < 75˚ in Fig. 4h, correct trials) at the begging of the test segment (first 1 s). 

Gray dots show Pearson’s correlation coefficients for signal (mean activity for each of four trial type) and noise (residual activity around the mean). Black 
traces show the running mean ± s.e.m. (window size = 100 pairs). n = 1020 pairs in V1, 6807 pairs in RSC, 1177 pairs in MM.

(b) Similar to panel (a), except with pure sample cue selective cells (θ = 0˚ in Fig. 4i, correct trials). n = 202 pairs in V1, 1797 pairs in RSC, 182 pairs in MM.
(c) Similar to panel (a), except with pure test cue selective cells (θ = 90˚ in Fig. 4i, correct trials). n = 3362 pairs in V1, 1334 pairs in RSC, 958 pairs in MM.
(d) Decoding accuracy of XOR in the original data and data shuffled to disrupt noise correlations. Noise correlations were disrupted by shuffling trial identity 

within each trial type for each cell. Error bars indicate mean ± s.e.m. The difference in decoding accuracy between the mixed selectivity and pure 
selectivity population was not significantly different between the original data and trial-shuffled data in all four areas (V1: p = 0.66, RSC: p = 0.22, MM: 
p = 0.40, A: p = 0.43). 
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Supplementary Fig. 7 | Decoding accuracy from simulated mixed and pure selectivity populations
(a) Schematic of simulated population. The number of spikes generated by each cell follows a Poisson distribution with the mean λ. Each cell responds to a 

preferred cue (or a preferred combination of cues) with the mean of λpref and to an unpreferred cue with the mean of λunpref. The minimum unit population 
size is a set of four cells, each of which preferentially responds to a specific trial type in the mixed selectivity population, or to a specific sample cue or test 
cue identity in the pure selectivity population. The population size increases by including N sets of the unit population with the same selectivity pattern.

(b) Decoding accuracy for the sample cue (or test cue) in simulated population activity under a various combination of the mean activity (λpref and λunpref). The 
SNR in the population increases with higher λpref and lower λunpref under Poisson noise. The population activity was simulated on 10,000 trials and repeated 
10,000 times, separately in mixed selectivity population (solid lines) and pure selectivity population (dashed lines). Shading indicates mean ± s.e.m. and 
is equal or smaller than the line widths.

(c) Similar to panel (b), but under various combinations of the population size and noise correlation magnitudes. The SNR in the population increases with a 
larger population size and lower noise correlation.

(d) Similar to panel (b), but with the decoding accuracy for the reward direction (XOR). For a pure selectivity population, the decoding accuracy of XOR (pXOR, 
dashed line in panels d, e) can be predicted by decoding accuracy for the sample cue (or test cue) (p, dashed line in panels b, c). Open circles show p̂XOR
predicted by p2 + (1–p)2: the sum of probabilities that both sample and test cues decoded correctly (p2) or incorrectly (1–p)2. See Supplementary Fig. 8 
for reasoning.

(e) Similar to panel (c), but with the decoding accuracy for the reward direction (XOR).
(f) Similar to panel (b), but with XOR mutual information divided by the total number of expected spikes in a population.
(g) Similar to panel (c), but with XOR mutual information divided by the total number of expected spikes in a population.
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Supplementary Fig. 8 | Mathematical interpretation of the decoding accuracy from simulated mixed and pure selectivity populations
(a) Decoding accuracy for each task-related variable in mixed vs pure selectivity populations, shown similarly to Figure 5a. 
(b) For a population of mixed selectivity cells, XOR can be linearly decoded by a single decision. The decoding accuracy is equal for each task-related variable 

(pmix) because each cell is equally informative for the sample cue, test cue, and reward direction (Supplementary Fig. 7a).
(c) For a population of pure selective cells, XOR can be decoded by dual decisions about the sample cue and test cue, as illustrated by the two decision 

boundaries for the sample cue and test cue (dashed lines). When the sample cue information and test cue information are plotted together in a 2D space, 
these two boundaries form nonlinear decision boundaries that separate right vs left (green vs red) decoding for the reward direction (XOR). When the 
decoding accuracy is equal for the sample cue or the test cue (ppure), the decoding accuracy of XOR is given by ppure

2 + (1− ppure )
2 , the sum of probability 

that both cues are decoded correctly, ppure
2 , or incorrectly, (1− ppure )

2 (due to the task design). The decoding accuracy for XOR is thus lower than that for 
the sample cue or test cue. See also Supplementary Figure 7.
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Supplementary Fig. 9 | Virtual reality maze for behavioral training 
(a) Linear track in Phase 1. The maze was lengthened based on the behavioral performance (Methods).
(b) Single-tower maze in Phase 2. The T-stem was either black or white and T-arms were BW or WB, resembling the sample cue and test cue, respectively. 

The rewarded turn direction was determined by the combination of the T-stem color and T-arm color, but also indicated by the location of a single tower.
(c) Two-tower maze in Phase 3. The rewarded turn direction was determined by the combination of the T-stem color and T-arm color. Two-tower trials were 

interleaved with single-tower trials. The fraction of single-tower trials varied based on the behavioral performance (Methods). 
(d) Delayed match-to-sample maze. Red triangle indicates the mouse position in the maze. The test cue configuration, BW or WB, was revealed when the 

mouse reached a point 240 cm away from the maze start.
(e) Two-tower maze used in “crutch trials”, which are randomly selected 10% of trials in Phase 4 to aid the performance of mice. The maze structure was 

similar to (c), except for the longer T-stem.
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