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ABSTRACT

Pruning neural network parameters is often viewed as a means to compress models,
but pruning has also been motivated by the desire to prevent overfitting. This
motivation is particularly relevant given the perhaps surprising observation that
a wide variety of pruning approaches increase test accuracy despite sometimes
massive reductions in parameter counts. To better understand this phenomenon, we
analyze the behavior of pruning over the course of training, finding that pruning’s
effect on generalization relies more on the instability it generates (defined as the
drops in test accuracy immediately following pruning) than on the final size of the
pruned model. We demonstrate that even the pruning of unimportant parameters
can lead to such instability, and show similarities between pruning and regulariz-
ing by injecting noise, suggesting a mechanism for pruning-based generalization
improvements that is compatible with the strong generalization recently observed
in over-parameterized networks.

1 INTRODUCTION

Pruning weights and/or convolutional filters from deep neural networks (DNNs) can substantially
shrink parameter counts with minimal loss in accuracy (LeCun et al., 1990; Hassibi & Stork, 1993;
Han et al., 2015a; Li et al., 2016; Molchanov et al., 2017; Louizos et al., 2017; Liu et al., 2017;
Ye et al., 2018), enabling broader application of DNNs via reductions in memory-footprint and
inference-FLOPs requirements. Moreover, many pruning methods have been found to actually
improve generalization (measured by model accuracy on previously unobserved inputs) (Narang
et al., 2017; Frankle & Carbin, 2018; You et al., 2019). Consistent with this, pruning was originally
motivated as a means to prevent over-parameterized networks from overfitting to comparatively small
datasets (LeCun et al., 1990).

Concern about over-parameterizing models has weakened, however, as many recent studies have found
that adding parameters can actually reduce a DNN’s generalization-gap (the drop in performance
when moving from previously seen to previously unseen inputs), even though it has been shown
that the same networks have enough parameters to fit large datasets of randomized data (Neyshabur
et al., 2014; Zhang et al., 2016). Potential explanations for this unintuitive phenomenon have come
via experiments (Keskar et al., 2016; Morcos et al., 2018; Yao et al., 2018; Belkin et al., 2018;
Nagarajan & Kolter, 2019), and the derivation of bounds on DNN generalization-gaps that suggest
less overfitting occurs as parameter counts increase (Neyshabur et al., 2018). This research has
implications for neural network pruning, where a puzzling question has arisen: if larger parameter
counts don’t increase overfitting, how does pruning parameters improve generalization?

To address this question we first introduce the notion of pruning instability (Section 3), which,
intuitively, is the size of the change in network outputs caused by a pruning iteration. We then
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empirically analyze the instability and generalization associated with various magnitude-pruning
(Han et al., 2015b) algorithms in different settings, making the following contributions:

1. We find a tradeoff between the stability and potential generalization benefits of pruning, and
show pruning’s similarity to regularizing with noise—suggesting a mechanism unrelated to
parameter counts through which pruning appears to affect generalization.

2. We characterize the properties of pruning algorithms which lead to instability and corre-
spondingly higher generalization.

3. We derive a batch-normalized-parameter pruning algorithm to better control pruning stability.

2 RELATED WORK

There are various approaches to pruning neural networks. Pruning may be performed post-hoc (LeCun
et al., 1990; Hassibi & Stork, 1993; Han et al., 2015b; Liu et al., 2017), or iteratively throughout
training, such that there are multiple pruning events as the model trains (Hochreiter & Schmidhuber,
1997; Narang et al., 2017; Zhu & Gupta, 2017). Most methods prune parameters that appear
unimportant to the function computed by the neural network, though means of identifying importance
vary. Magnitude pruning (Han et al., 2015b) uses small-magnitude to indicate unimportance and has
been shown to perform competitively with more sophisticated approaches (Gale et al., 2019).

Many pruning studies have shown that the pruned model has heightened generalization (Narang
et al., 2017; Frankle & Carbin, 2018; You et al., 2019), consistent with the fact that pruning may be
framed as a regularization (rather than compression) approach. For example, variational Bayesian
approaches to pruning via sparsity-inducing priors (Molchanov et al., 2017; Louizos et al., 2017)
can describe weight removal as a process that reduces model description length, which in theory
may help improve generalization (Rissanen, 1978). Similarly, the idea that models may be described
more succinctly at flat minima has motivated pruning in service of flat minimum search (Hochreiter
& Schmidhuber, 1997). Though Dinh et al. (2017) notes, however, that flatness can be arbitrarily
modified by reparameterizing the function, and sharp minima can generalize well.

VC dimension (a measure of model capacity) has motivated the use of pruning to improve gener-
alization as well (LeCun et al., 1990; Hassibi & Stork, 1993). Overfitting can be bounded above
by an increasing function of VC dimension, which itself often increases with parameter counts, so
fewer parameters can lead to a guarantee of less overfitting (Shalev-Shwartz & Ben-David, 2014).
Unfortunately, such bounds can be so loose in practice that tightening them by reducing parameter
counts need not translate to better generalization (Dziugaite & Roy, 2017).

Rather than support parameter-count-based arguments for generalization in DNNs, our results suggest
pruning may improve generalization by creating various noisy versions of the internal representation
of the data, which unpruned parameters try to fit to, as in noise-injection regularization (Srivastava
et al., 2014; Poole et al., 2014). Dropout seems to create particularly similar noise, as it temporarily
sets random subsets of layer outputs to zero (likely changing a given input’s internal representation
every epoch). Indeed, applying dropout-like zeroing noise to a subset of features during training can
encourage robustness to a post-hoc pruning of that subset (Leclerc et al., 2018; Gomez et al., 2018).
Pruning noise ultimately differs, however, as it is: applied less frequently, not temporary (except in
algorithms that allow some weight re-entry), usually not random, and less well studied.

3 APPROACH

Given a neural network and set of test data, we define a pruning algorithm’s instability on pruning
iteration i in terms of the neural network’s top-1 test accuracy before (tpre) and after (tpost) pruning:
instabilityi = |tpre − tpost|.
This measure is related to a weight’s importance (sometimes referred to as “saliency”; LeCun et al.
(1990); Hassibi & Stork (1993)) to the test accuracy, in that less stable pruning algorithms target
more important sets of weights (all else equal). The stability of a pruning algorithm may be affected
by many factors. Our experiments (Section 4) explore the effects of the following: pruning target,
pruning schedule, iterative pruning rate, and model. The remainder of this section provides an
overview of these factors and demonstrates a need for a novel pruning target, which we derive.
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3.1 PRUNING TARGET

In all of our experiments, we use iterative magnitude pruning (Han et al., 2015b), which removes
weights according to some magnitude-based rule, retrains the resulting smaller network to recover
from the pruning, and repeats until the desired size reduction is met. We denote pruning algorithms
that target the smallest-magnitude parameters with an "S" subscript (e.g. pruneS), random parameters
with an "R" subscript, and the largest-magnitude parameters with an "L" subscript. The usual
approach to pruning involves removing parameters that have the smallest magnitudes (Li et al., 2016;
Gale et al., 2019), or, similarly, those parameters least important to the loss function as determined by
some other metric (LeCun et al., 1990; Hassibi & Stork, 1993; Molchanov et al., 2016; 2017; Louizos
et al., 2017; Ye et al., 2018; Yu et al., 2018; You et al., 2019).

3.1.1 IDENTIFYING IMPORTANT BATCH-NORMALIZED PARAMETERS

The correlation between parameter magnitude and importance weakens in the presence of batch
normalization (BN) (Ioffe & Szegedy, 2015). Without batch normalization, a convolutional filter
with weights W will produce feature map activations with half the magnitude of a filter with weights
2W : filter magnitude clearly scales the output. With batch normalization, however, the feature
maps are normalized to have zero mean and unit variance, and their ultimate magnitudes depend on
the BN affine-transformation parameters γ and β. As a result, in batch normalized networks, filter
magnitude does not scale the output, and equating small magnitude and unimportance may therefore
be particularly flawed. This has motivated approaches to use the scale parameter γ’s magnitude to
find the convolutional filters that are important to the network’s output (Ye et al., 2018; You et al.,
2019).

In Appendix A.1, we derive a novel estimate of filter importance/magnitude that incorporates both
γ and β. Aside from enabling a closer approximation to BN output magnitude, accounting for β is
necessary to identify filters that produce meaningful, post-ReLU activations (i.e., a negative β could
cause a large portion of the output to not pass through the ReLU nonlinearity).

We use the phrase "E[BN] pruning" to denote magnitude pruning that computes magnitude using this
derived estimate. E[BN] pruning has two advantages. First, this approach avoids the problematic
assumption that filter importance is tied to filter `2 norm in a batch-normalized network. Accordingly,
we hypothesize that E[BN] pruning can grant better control of the stability of the neural network’s
output than pruning based on filters’ `2 norms. Second, the complexity of the calculation is negligible
as it requires (per filter) just a handful of arithmetic operations on scalars, and two PDF and CDF
evaluations, which makes it cheaper than a data-driven approach (e.g. approximating the expected
value via the sample mean of feature map activations for a batch of feature maps).

3.2 SUMMARY OF MODELS

We consider three basic model classes: a simple network with convolutions (2x32, pool, 2x64, pool)
and fully connected layers (512, 10) that we denote Conv4, VGG11 (Simonyan & Zisserman, 2014)
with its fully-connected layers replaced by a single fully-connected layer, and ResNet18 (He et al.,
2016). All convolutions are 3x3. We trained these models using Adam (Kingma & Ba, 2014) with
initial learning rate lr = 0.001, as we found Adam more helpful than SGD for recovering from
unstable pruning (seemingly consistent with the observation in Zhu & Gupta (2017) that recovery
from pruning is more difficult when learning rates are low).

3.3 ITERATIVE PRUNING RATE AND SCHEDULE

For Conv4, we apply pruning to its first linear layer (which contains 94% of Conv4’s 1,250,858
parameters). For VGG/ResNet, pruning targets the final four convolutional layers (which contain
90% of VGG11’s 9,231,114 parameters, and 74% of ResNet18’s 11,173,962 parameters). Pruning
focused on later layers partly because, as also found in Li et al. (2016); You et al. (2019), it allowed
the network to recover more easily. Unless noted otherwise, the total pruning percentages were: 42%
of VGG11, 46% of ResNet18, and 10% of Conv4.

The pruning algorithms we consider are iterative: we define a pruning schedule that describes the
epochs on which pruning events occur, and set a corresponding (constant) iterative pruning rate that
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Figure 1: Pruning instability improves generalization of (Top) VGG11 and (Bottom) ResNet18 when
training on CIFAR-10 (10 runs per configuration). (Left) Test accuracy during training of several
models illustrates how adaptation to more unstable pruning leads to better generalization. (Right)
Means reduce along the epoch dimension (creating one point per run-configuration combination).

will ensure the total pruning percentage is met by the end of training (please see Appendix A.3 for
rate and schedule details). Thus, throughout training, pruning steadily removes DNN parameters,
with the iterative pruning rate determining the number pruned per event.

4 EXPERIMENTS

Pruning studies often aim to compress pre-trained models that generalize well, and consequently,
much work has focused on metrics to identify parameter importance: if you can find the parameters
that matter the least to the function computed by the DNN, then you can prune more parameters
without significantly harming accuracy. As a bonus, such pruning methods can sometimes even
increase generalization (Narang et al., 2017; Frankle & Carbin, 2018; You et al., 2019). However,
the mechanism by which pruning induces higher generalization remains unknown. Here, rather
than investigate how to best maintain accuracy when pruning the network, we instead focus on
understanding the mechanisms underlying these generalization improvements.

4.1 THE GENERALIZATION-STABILITY TRADEOFF

Can improved generalization in pruned DNNs be explained by parameter-count reduction alone,
or rather, do the properties of the pruning algorithm play an important role in generalization? As
removing parameters from a DNN via pruning may make the DNN less capable of fitting to the noise
in the training data, as originally suggested in LeCun et al. (1990); Hassibi & Stork (1993), we might
expect that the generalization improvements observed in pruned DNNs are entirely explained by the
number of parameters removed. In which case, methods that prune equal amounts of parameters
would generalize similarly.

Alternatively, perhaps some aspect of the pruning algorithm itself is responsible for increased
generalization. This seems plausible as the reported generalization benefits of pruning vary widely
across studies. One possible explanation for this variability is differences in the pruning algorithms
themselves. A key differentiator of these algorithms is their stability: more stable approaches may
compute a very close approximation to the way the loss changes with respect to each parameter and
prune a single parameter at a time (Hassibi & Stork, 1993), while less stable approaches may assume
that parameter magnitude and importance are roughly similar and prune many weights all at once
(Han et al., 2015b). Therefore, to the extent that differences in pruning algorithms explain differences
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Figure 2: When pruning 10% of Conv4’s largest dense layer, the final generalization gap depends on
the magnitude of the weights that were pruned during training. This is particularly true when using
unstructured pruning (left) rather than structured pruning (right).

in pruning-based generalization improvements, we might expect to observe a relationship between
generalization and pruning stability.

To determine whether pruning algorithm stability affects generalization, we compared the instability
and final top-1 test accuracy of several pruning algorithms with varying methods for estimating
importance and iterative pruning rates (Figure 1). Consistent with the nature of the pruning algorithm
playing a role in generalization, we observed that more unstable pruning algorithms created higher
final test accuracies than those which were stable (Figure 1, right; VGG11: Pearson’s correlation r =
.84, p-value = 1.3e−11; ResNet18: r = .65, p-value = 5.2e−5). While many pruning approaches
have aimed to induce as little instability as possible, these results suggest that pruning techniques
may actually facilitate better generalization when they induce more instability. Furthermore, these
results suggest that parameter-count based arguments may not be sufficient to explain generalization
in pruned DNNs, and suggest that the precise pruning method plays a critical role in this process.

Figure 1 also demonstrates that pruning events for pruneL with a high iterative pruning rate (red
curve, pruning as much as 13% of a given convolutional layer per pruning iteration) are substantially
more destabilizing than other pruning events, but despite the dramatic pruning-induced drops in
performance, the network recovers to higher performance within a few epochs. Several of these
pruning events are highlighted with red arrows. Please see Appendix A.2 for visualization of the
epoch-wise instabilities of each method in VGG11.

Interestingly, we initially observed that ResNet18 adapted to pruning events more quickly than
VGG11 (accuracy rebounded after pruning then flattened soon after instead of climbing steadily).
Thinking that shortcut connections were allowing the network to adapt to pruning events too easily,
we tried pruning a larger amount of the penultimate block’s output layer: this reduced the number of
shortcut connections to the final block’s output layer, lengthened the adaptation period, and improved
generalization. This simple improvement of pruning hyperparameters suggests a potential for further
optimization of the results shown. Please see Appendix A.3.1 for all hyperparameters/details of these
experiments.

4.2 THE ROLE OF WEIGHT MAGNITUDE IN PRUNING REGULARIZATION

We have demonstrated that, perhaps surprisingly, pruning larger magnitude weights via the E[BN]
algorithm can result in larger test accuracy improvements (Figure 1). This suggests a positive
correlation between pruning target magnitude and pruning’s regularization effect. However, it’s not
clear whether this relationship holds more generally; i.e., perhaps it was caused by a feature of our
E[BN] algorithm or the networks examined. Alternatively, this effect may be dependent on whether
nodes/filters (structured pruning) or individual parameters (unstructured pruning) are pruned.

As such, we tested whether target weight magnitude correlates with pruning’s regularizing effect
when using both unstructured and structured magnitude pruning on the penultimate linear layer of a
small network without batch normalization (Conv4). Specifically, we constructed a pruning target for
each weight-magnitude decile (see Appendix A.3.2 for details), used each target to prune ten separate
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networks as they trained, and compared the generalization gaps (test-train accuracy) of the pruned
networks to the target pruned (Figure 2).

For both unstructured and structured pruning (Figure 2 left and right, respectively), we found
that pruning larger weights led to better generalization gaps, though, interestingly, this effect was
much more dramatic in the context of unstructured pruning than structured pruning. One possible
explanation for this is that, in structured pruning, the `2 norm of pruned neurons did not vary
dramatically past the fifth decile, whereas the unstructured deciles were approximately distributed
exponentially. As a result, the top 50% of filters for the structured case were not clearly distinguished,
making magnitude pruning much more susceptible to small sources of noise. These results suggest
that, when weight magnitudes vary considerably, pruning large magnitude weights may lead to
improved generalization.
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Figure 3: The top-1 test accuracy during training
with multiple approaches to pruning ResNet18.

Interestingly, for ResNet18, we actually found
that structured pruneL (red line) performed no-
ticeably better than unstructured pruneL (green
line) (Figure 3). The worse performance of un-
structured pruneL may stem from its harming
the helpful inductive bias provided by convo-
lutional filters; i.e., perhaps removing the most
important connections in all convolutional fil-
ters degrades performance more than pruning
the same number of connections via removal
of several entire filters. Note that these exper-
iments are not directly comparable to Figure
1, as they employ a different set of layerwise
pruning percentages (see Appendix A.3.3 for
experimental setup information).

4.3 THE ROLE OF ITERATIVE PRUNING RATE IN PRUNING INSTABILITY
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Figure 4: In VGG11, increasing the iterative pruning rate (and decreasing the number of pruning
events in order to hold total pruning percentage constant) leads to more instability, and can allow
methods that target less important parameters to generalize better. Additionally, E[BN] magnitude
better approximates parameter importance than `2-norm magnitude (see Figure A2 for another
example and discussion of this phenomenon). An unpruned baseline is shown on the dotted line.

While pruning large magnitude weights appears to play a role in pruning’s ability to improve
generalization, more commonly used pruning algorithms often see generalization improvements
when targeting the smallest magnitude or least important parameters, suggesting that target mag-
nitude/importance is not the only characteristic of pruning algorithms relevant to generalization.
One possibility is that, given a pruning target, pruning more parameters per pruning iteration (while
holding constant the total pruning percentage) may lead to greater instability. If this is the case, we
would expect that increasing the iterative pruning rate should increase instability and, consequently,
generalization performance. Alternatively, if the final pruning fraction is all that matters, we would
expect that changing the iterative pruning rate while keeping the final pruning fraction fixed should
have no effect on generalization.

To test this, we plotted mean instability and test accuracy as a function of different iterative pruning
rates for both `2-norm and E[BN] pruning (Figure 4). Consistent with iterative pruning rate playing a
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Figure 5: Generalization improvements from pruning bear resemblance to those obtained by using
temporary (Left) multiplicative zeroing noise, and (Right) additive Gaussian noise, as long as the
noise is applied for enough batches/steps.

role in instability, we find that (given a pruning target) more instability is induced by using larger
iterative pruning rates (Figure 4 left). Moreover, pruning random or small magnitude parameters
performs best at the largest iterative rate (30%), supporting the idea that these methods require a
source of instability to boost generalization. This suggests that, when targeting less important weights,
higher iterative pruning rates during training can be an effective way to induce additional instability
and generalization.

We also found evidence that `2-norm pruning adds instability in networks with batch normalization at
least, seemingly by failing to identify important weights properly. While E[BN] magnitude pruning
led to the expected ordering of instabilities (e.g. pruning random weights is less stable than pruning
small weights), standard `2-norm magnitude pruning led to small-weight pruning being more unstable
than random-weight pruning, and almost as unstable as large-weight pruning. These results reinforce
that the precise choice of pruning algorithm can have a dramatic effect on the resultant instability and
test performance. (Algorithm and experiment details are available in Appendix A.3.4.)

Perhaps strangely, higher iterative pruning rates did not necessarily translate to improved generaliza-
tion when targeting the largest magnitude weights (pruneL). The fact that pruneL does not generalize
the best at the highest iterative pruning rate may be due to the reduction in pruning iterations required
by the large iterative pruning rate (i.e., when the iterative rate is at 30%, the number of pruning
events is capped at three, which removes 90% of a layer). Thus, while this rate is more unstable
(Figure 4 left) per iteration, pruning affects the network less often. This suggests that the regularizing
effect of pruning may be enhanced by pruning more often, providing a potential explanation for the
observation that methods that prune iteratively can generalize better (Han et al., 2015b).

4.4 PRUNING AS NOISE INJECTION

Our results thus far suggest that the generalization benefits from pruning result from pruning generated
instability, which is affected by a number of related factors, including pruning target, iterative pruning
rate, and the frequency of pruning. However, for all of our prior results, we also damaged model
capacity simply by the nature of pruning, which decreases the number of model parameters. It
therefore remains possible that the generalization benefits we see rely upon the reduction in capacity
conferred by pruning. Here, we examine this critical question.

We first note that pruning can be viewed as noise injection (Srivastava et al., 2014; Poole et al.,
2014), with the peculiarity that the noise is permanent. Because this permanence is what leads to the
capacity of the network being diminished, removing this aspect from our pruning algorithms while
holding everything else constant allows us to study pruning’s role as a noise injection algorithm while
maintaining model capacity.

As a baseline, we consider pruneL applied to VGG11, judging filter magnitude via the `2-norm
(additional experimental details are in Appendix A.3.5). We then modify this algorithm such that,
rather than permanently prune filters, it simply multiplies the filter weights by zero, allowing the
zeroed weights to immediately resume training in the network ("Zeroing 0" in Figure 5 Left). However,
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by allowing pruned weights to immediately recover, this experiment also removes a key, potentially
regularizing aspect of pruning noise: the requirement that the rest of the network adapts to fit the new
representations generated by pruning.

To encourage this potentially important facet of pruning noise, we also added variants that held
weights to zero for 50 and 1500 consecutive batches. As a related experiment, we also measured the
impact of adding Gaussian noise to the weights in Figure 5, right. Noise was applied either once
(Gaussian 0) or repeatedly over a series of training batches (Gaussian 50/1500).

If capacity effects are not necessary to explain pruning’s role in generalization, then we would expect
that the generalization behavior of these non-permanent noise injection algorithms could mimic the
generalization behavior of pruneL. Alternatively, if capacity reduction is a necessary component of
pruning-based generalization improvements, then we would not expect close similarities between the
generalization phenomena of pruneL and non-permanent pruning noise injection.

Consistent with capacity not being necessary to explain generalization in pruned DNNs, applying
zeroing noise for 50 batches to filters (rather than pruning them completely) generates strikingly
similar accuracy to pruneL (Figure 5 Left). Specifically, the patterns in instability are qualitatively
and quantitatively similar, as are the generalization levels throughout training.

Importantly, we found that applying zeroing noise once (Zeroing 0; brown line) was not sufficient
to generate better performance, suggesting that the regularization induced by forcing weights to
adapt to noised representations is critical to pruning’s ability to improve generalization. Moreover,
we found that, while applying Gaussian noise could increase generalization if applied for long
enough (Gaussian 1500; purple line), it still did not match the performance of pruneL, suggesting that
multiplicative zeroing noise is substantially more effective than additive Gaussian noise1. Together,
these results demonstrate that pruning induced generalization benefits are not merely an effect of
reduced capacity, but rather are dependent on the regularization conferred by forcing networks to
adapt to noised representations over a sufficiently long period throughout training.

5 DISCUSSION

In this study, we defined the notion of pruning algorithm instability, and applied several pruning
approaches2 to multiple neural networks, assessing the approaches’ effects on instability and general-
ization. Throughout these experiments, we observed that pruning algorithms that generated more
instability led to better generalization (as measured by test accuracy). For a given pruning target and
total pruning percentage, instability and generalization could be fueled by raising iterative pruning
rates (Figure 4, Section 4.3). Additionally, targeting more important weights, again holding total
parameters pruned constant, led to more instability and generalization than targeting less important
weights (Figure 1, Section 4.1).

These results support the idea that the generalization benefits of pruning cannot be explained solely
by pruning’s effect on parameter counts—the properties of the pruning algorithm must be taken
into account. Our analysis also suggests that parameter-count effects may not even be necessary
to explain how pruning improves generalization. Indeed, we provide an interpretation of pruning
as noise injection, a popular approach to regularizing DNNs, and find that making pruning noise
impermanent provides pruning-like generalization benefits without removing parameters from the
model (Figure 5, Section 4.4).

5.1 CAVEATS AND FUTURE WORK

While not emphasized in our discussion, pruning algorithm stability can be a desirable property, as
recovery from pruning damage is not guaranteed. Indeed, pruning too many large/important weights
can lead to worse final generalization (Li et al., 2016). Recovery appears to be a function of several
factors, including: learning rate (Zhu & Gupta, 2017)); presence of an ongoing regularization effect
(Figure 3, Section 4.2); preservation of helpful inductive biases (Figure 3, Section 4.2); and damage
to network capacity (e.g., removing too much of an important layer could cause underfitting).

1At the scale we used.
2Including our own novel pruning approach, described in Section 3.1.1, which was designed to better control

pruning stability.
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A better understanding of the factors which aid recovery from pruning instability could aid the design
of novel pruning algorithms. For example, pruning methods that allow weights to re-enter the network
(Narang et al., 2017) could perhaps prune important weights occasionally to enhance generalization
improvements, without risking permanent damage to the pruned networks.

In describing how pruning regularizes a model, we touched on similarities between pruning and
noise injection. Our results, however, may also be consistent with other parameter-count-independent
approaches to understanding generalization in neural networks, as pruning may reduce the information
stored in the network’s weights (Hinton & Van Camp, 1993), and make the network more distributed
(Morcos et al., 2018; Dettmers & Zettlemoyer, 2019). This raises the possibility that pruning noise
engenders helpful properties in DNNs, though it remains unclear whether such properties might be
identical to those achieved with more common noise injection schemes (Srivastava et al., 2014; Poole
et al., 2014). Further exploration will be necessary to better understand the relationship between
these approaches.

One important caveat of our results is that they were generated with CIFAR-10, a relatively small
dataset, so future work will be required to evaluate whether the presented phenomena hold in larger
datasets. Relatedly, we only studied pruning’s regularizing effect in isolation and did not include
commonly used regularizers (e.g., weight decay) in our setups. In future work, it would be interesting
to examine whether pruning complements the generalization improvements of other commonly used
regularization techniques.
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A APPENDIX

A.1 DERIVATION OF E[BN] MAGNITUDE (SECTION 3.1.1)

To approximate the expected value/magnitude of a batch-normalized, post-ReLU feature map activa-
tion, we start by defining the 2D feature map produced by convolution with BN:

M = γBN(W ∗ x) + β.

We approximate the activations within this feature map as Mij ∼ N (β, γ). This approximation is
justified if central limit theorem assumptions are met by the dot products inW ∗x, and we empirically
show in Figure A.1 that this approximation is highly accurate early in training, though it becomes
less accurate as training progresses. Given this approximation, the post-ReLU feature map

R = max{0,M}
has elements Rij that are either 0 or samples from a truncated normal distribution with left truncation
point l = 0, right truncation point r =∞, and mean µ where

µ = γ
φ(λ)− φ(ρ)

Z
+ β,

λ =
l − β
γ

, ρ =
r − β
γ

, Z = Φ(ρ)− Φ(λ),

and φ(x) and Φ(x) are the standard normal distribution’s PDF and CDF (respectively) evaluated at x.
Thus, an approximation to the expected value of Rij is given by

E[Rij ] ≈ Φ(λ)0 + (1− Φ(λ))µ.

"E[BN] pruning" uses this approximation to E[Rij ] to calculate filter magnitude and is otherwise
analogous to magnitude pruning.

The main drawback to the E[BN] approach is the sometimes poor approximation Mij ∼ N(β, γ).
For a VGG19 model, we found that the extent to which the approximation holds depends on the layer
and training epoch (Figure A.1). A less serious drawback is that this approach does not account for
the strength of connections to the post-BN feature map, which could have a large expected value but
low importance if relatively small-magnitude weights connected it to the following layer.
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Figure A1: We examined the normalized activations (shown in blue histograms) of feature maps in
the final eight convolutional layers of VGG19 before (left) and after (right) training to convergence.
We found that the approximation to standard normality (shown in orange) of these activations is
reasonable early on but degrades with training (particularly in layers near the output).
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A.2 EPOCH-WISE INSTABILITIES
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Figure A2: In VGG11, pruneS E[BN] is more stable than pruneS, which uses filter-`2-norm to
compare parameter magnitudes. Methods with higher iterative pruning rates create more instability
on a given iteration. Means reduce along the run dimension (10 runs per configuration).

Note that this graph uses a method (pruneS) that was included in Figure 1 right, but was not displayed
in Figure 1 left due to its similarity to pruneS E[BN]. Additional experimental details are in Section
A.3.1.
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A.3 EXPERIMENTAL DETAILS

Unstructured magnitude pruning entails removing individual weights (subsets of filters/neurons),
which are selected for pruning based on their magnitude. Our unstructured pruning approach does
not allow previously pruned weights to reenter the network (Narang et al., 2017; Zhu & Gupta, 2017;
Gale et al., 2019). Structured magnitude pruning removes entire filters/neurons, which are selected
based on their `2-norms or via the E[BN] calculation. Except where noted, we use structured pruning
for VGG11 and ResNet18.

We denote the pruning of n layers of a network by specifying a series of epochs at which pruning
starts s = (s1, ..., sn), a series of epochs at which pruning ends e = (e1, ..., en), a series of fractions
of parameters to remove p = (p1, ..., pn), and an inter-pruning-iteration retrain period r ∈ N. For a
given layer l, the retrain period r and fraction pl jointly determine the iterative pruning percentage
il. Our experiments prune the same number of parameters il × size(layerl) per pruning iteration,
ultimately removing pl × 100% of the parameters by the end of epoch el.

Our approach is designed to study the effects of changing factors such as the iterative pruning rate
and lacks some practically helpful features, e.g. hyperparameters indicating how many parameters
can be safely pruned (Liu et al., 2017; Molchanov et al., 2017). When layerwise iterative pruning
percentages differ (i.e., when there exists an a and b such that ia and ib are unequal), our figures state
the largest iterative pruning rate that was used in any of the layers.

For ResNet, our pruning algorithms did not account for the magnitude of incoming shortcut connec-
tions when judging filter magnitude/importance. Though we did prune the incoming and outgoing
shortcut connections associated with any pruned feature maps.

We used only the CIFAR-10 dataset (Krizhevsky & Hinton, 2009) in our experiments, a limitation of
our study. We used batch size 128, and only used data augmentation in the decile experiment (Figure
2). For some experiments, we give multi-step learning rate schedules lrs = (x, y), which means we
shrink the learning rate by a factor of 10 at epochs x and y.

A.3.1 FIGURE 1

We used E[BN] pruning in all models that were pruned, except for one model that used `2-norm
magnitude pruning, which was included in Figure 1 right but not displayed in Figure 1 left due to its
qualitative similarity to pruneS E[BN]. We leave out "E[BN]" in the legend of Figure 1 left, but all
models nonetheless used E[BN] pruning.

The models were trained on CIFAR-10 with Adam for 325 epochs with lrs = (150, 300). The
error bars are 95% confidence intervals for the mean, bootstrapped from 10 distinct runs of each
experiment.

Since the layerwise pruning percentages varied, pruning required multiple iterative pruning percent-
ages, the largest of which is denoted in the legend (rounded to the nearest integer).

VGG11 Pruning targeted the final four convolutional layers during training with (layerwise)
starting epochs s = (3, 4, 5, 6), ending epochs e = (150, 150, 150, 275), and pruning fractions
p = (0.3, 0.3, 0.3, 0.9). To allow for the same amount of pruning among models with differing
iterative pruning percentages, we adjusted the number of inter-pruning retraining epochs. The models
with the maximum iterative pruning percentage of 1% had r = 4, while the models with the maximum
iterative pruning percentage of 13% had r = 40. The model pruned with `2-norm magnitude pruning,
which only appeared in Figure 1 right, had r = 4 as well.

ResNet18 Pruning targeted the final four convolutional layers of ResNet18 during training with
(layerwise) starting epochs s = (3, 4, 5, 6), ending epochs e = (150, 150, 170, 275), and pruning
fractions p = (0.25, 0.4, 0.25, 0.95). As noted in Section 4.1, we increased the pruning rate of the
output layer of the penultimate block to remove shortcut connections to the last layer, thinking that it
should increase the duration of adaptation to pruning. The models with the maximum iterative pruning
percentage of 1% had r = 4, while the models with the maximum iterative pruning percentage of
13% had r = 40.
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A.3.2 FIGURE 2

Each experiment in Figure 2 targeted one of ten weight-magnitude deciles in the post-convolutional
linear layer of the Conv4 network during training on CIFAR-10 with data augmentation.

While there are just ten deciles, the iterative nature of our pruning algorithms required the creation
of eleven different pruning targets: ten methods pruned from the bottom of the decile upward (one
experiment for each decile’s starting point: 0th percentile, 10th percentile, etc.), and one (D10) pruned
from the last decile’s ending point downward (pruning the very largest collection of weights each
iteration). In other words, D9 and D10 targeted the same decile (90th percentile to maximum value),
but only D10 actually removed the largest weights on a given iteration (weights in the 100th-99th
percentiles, for example). The D9 experiment would target weights starting from the 90th percentile
(e.g. it may prune the 90th-91st percentiles on a particular iteration).

The training/pruning setup used the Adam optimizer, s = (4), e = (52), p = (0.1), r = 3, and
lrs = (30, 60). We calculated the generalization gap on epoch 54 and sampled average pruned
magnitudes on epoch 35. We obtained qualitatively similar results regardless of whether we used
fewer training epochs or data augmentation. The error bars are 95% confidence intervals for the
means, bootstrapped from 10 distinct runs of each configuration.

A.3.3 FIGURE 3

In Figure 3, pruneL targeted the final four convolutional layers of ResNet18 during training with
(layerwise) starting epochs s = (3, 4, 5, 6), ending epochs e = (150, 150, 150, 275), and pruning
fractions p = (0.1, 0.1, 0.1, 0.9). The models with the maximum iterative pruning percentage of 1%
had r = 4, the models with the maximum iterative pruning percentage of 13% had r = 40, and the
"One Shot" model pruned all its targeted parameters at once on epoch 246.

When performing unstructured pruning, we pruned individual weights from filters based on their
magnitude. The structured pruning experiments used E[BN] pruning.

The models were trained on CIFAR-10 with Adam for 325 epochs with lrs = (150, 300). The
error bars are 80% confidence intervals for the means, bootstrapped from 3+ distinct runs of each
experiment.

A.3.4 FIGURE 4

In Figure 4, pruning targeted the final four convolutional layers of VGG11 during training with
(layerwise) starting epochs s = (3, 4, 5, 6), ending epochs e = (150, 150, 150, 275), and pruning
fractions p = (0.3, 0.3, 0.3, 0.9). To create the different iterative pruning rates, we used models
with inter-pruning retrain periods r = 4, r = 20,r = 40, and r = 60. Since the layerwise pruning
percentages varied, pruning required multiple iterative pruning percentages, the largest of which is
denoted on the horizontal axis. An unpruned baseline model average (10 runs) is plotted on the dotted
line.

The models were trained on CIFAR-10 with Adam for 325 epochs with lrs = (150, 300). The
error bars are 95% confidence intervals for the means, bootstrapped from 10 distinct runs of each
experiment.

A.3.5 FIGURE 5

In Figure 5, pruning targeted the final four convolutional layers of VGG11 during training with (lay-
erwise) starting epochs s = (3, 4, 5, 6), ending epochs e = (150, 150, 150, 275), pruning fractions
p = (0.3, 0.3, 0.3, 0.9), and inter-pruning-iteration retrain period r = 40. When injecting pruning
noise, we used the same pruning schedule and percentages, but applied noise to the parameters instead
of removing them. The Gaussian noise had mean 0 and standard deviation equal to the empirical
standard deviation of a noiseless filter from the same layer. PruneL used `2-norm pruning.

The models were trained on CIFAR-10 with Adam for 325 epochs with lrs = (150, 300). The
error bars are 95% confidence intervals for the means, bootstrapped from 10 distinct runs of each
experiment.
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