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Abstract

Cortical circuits combine new inputs with ongoing activity during a variety of behaviors,

including evidence accumulation during decision-making. However, the neural circuit

mechanisms underlying how populations of neurons perform the computations necessary

for this process and the dynamics which govern how neuronal populations change from

moment-to-moment during evidence accumulation remain unclear. Here, we trained mice

to perform several novel virtual-navigation decision tasks, including one which requires

the accumulation of multiple, discrete evidence cues. As mice accumulated evidence, the

posterior parietal cortex (PPC) transitioned between distinguishable and largely

uncorrelated activity patterns, often involving mostly different sets of active neurons from

moment-to-moment. These activity patterns contained task-relevant information

distributed across the neuronal population. Because animals make decisions on single

trials, we chose to analyze these activity patterns on a trial-by-trial basis. As single trials

unfolded, each event — whether a new evidence cue or a behavioral choice — modified

the dynamics of the PPC for seconds, even across trials. These events did not change the

tonic activity of a specific set of neurons; rather, each event altered the probabilities that

govern how one activity pattern transitions to the next, constraining the possible future

patterns of activity. Thus, representations of ongoing events were influenced both by the

sequence of previous evidence cues within the current trial and by the outcome of the

previous trial, thereby generating multiple distinguishable activity patterns for the same

level of accumulated evidence. These observations suggest that evidence accumulation
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does not rely upon the explicit competition between groups of neurons (as would be

predicted by winner-take-all models), but instead reflects dynamical properties of the PPC

that may instantiate a form of short-term memory consistent with reservoir computing.
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Chapter 1

General introduction and background

Each of us makes hundreds of decisions every day, and these decisions often require the

combination of incoming sensory evidence with an internal representation of the world.

For example, in order to decide whether to turn left or right at an upcoming intersection,

one must integrate incoming sensory information about the world, such as street names or

landmarks, with internally represented information, such as directions to the destination or

a memory of the path taken so far.

The accumulation of evidence for decision-making is essential to survival. Many of the

decisions that we and other animals make rely on this process by requiring neuronal

circuits to integrate novel inputs with ongoing activity. Behaviorally, evidence

accumulation for decision-making has been extensively characterized and modeled.

However, the mechanisms neuronal circuits use to perform the computations underlying

this process remain poorly understood. We are interested in understanding how cortical

circuits perform these computations. In this thesis, we have developed a variety of new

behavioral and analysis techniques to probe the population dynamics underlying evidence
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accumulation for decision-making. Using these methods, we sought to understand the

rules that govern how populations of neurons change from moment-to-moment as

evidence is accumulated, and how these dynamics contribute to the computations

underlying perceptual decision-making.

This chapter provides a broad overview of previous work to characterize evidence

accumulation for decision-making on both a behavioral and neuronal level, as well as a

discussion of several key methodological developments. Chapter 2 explains the training

protocols and characterization of three novel navigation-based decision tasks in virtual

reality: one which requires mice to accumulate discrete pieces of evidence, one with a

delayed-match-to-sample design to dissociate activity related to sensory information from

that related to motor planning, and one which combines the two. Chapter 3 includes an

extensive description of the population dynamics in the PPC while mice perform an

evidence accumulation task. This chapter also includes the description of several new

analysis techniques to examine how neuronal activity changes from moment-to-moment

on single trials. Finally, Chapter 4 includes a discussion of the results, including how they

relate to winner-take-all and reservoir computing models of decision-making, and

proposes a set of future experiments to further elucidate the population dynamics in

parietal cortex during evidence accumulation.
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1.1 Drift-diffusion models

The accumulation of evidence over time for decision-making has been described by so-

called ‘drift-diffusion’ models (Ratcliff & Smith, 2004; Smith, 2000). In these models, a

decision variable (representing the sum of evidence acquired) begins a trial with a neutral

value, and drifts slowly as evidence is accumulated until a threshold or ‘decision bound’

is reached, at which point a decision is made. One prediction of such models is a tradeoff

between the speed and accuracy of perceptual decisions. For example, in a system with

decision bounds close to the system’s starting point, the decision variable would reach one

of the decision bounds rapidly, resulting in a speedy decision, but one that is based on

less evidence and therefore more susceptible to random fluctuations. Alternatively, moving

the decision bound away from the system’s starting point would increase the probability

of an accurate decision, but also increase the decision time by requiring more evidence to

be accumulated. This speed-accuracy tradeoff has been observed in humans, nonhuman

primates, and rodents (Rinberg et al., 2006; Roitman & Shadlen, 2002; Wickelgren, 1977),

though it is absent in some behavioral contexts (Uchida & Mainen, 2003). Drift-diffusion

models also predict that increasing the strength of the evidence increases the slope of the

accumulation curve, resulting in faster decisions while decreasing evidence strength reduces

the slope and results in slower decisions.

Drift-diffusion and related models can also be used to effectively model behavior

(Brunton et al., 2013; Kira et al., 2015; Drugowitsch et al., 2012; Shadlen & Kiani, 2013).
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For example, one recent study used a drift-diffusion framework to model the behavior of

rats and humans accumulating auditory clicks (Brunton et al., 2013). Surprisingly, the

authors found that behavioral variability did not originate from noise in the accumulator

(e.g., the memory of previous sensory stimuli); rather variability seemed to originate

purely from the presentation of sensory evidence. This result suggests that the brain acts

as an optimal accumulator and demonstrates the power of such purely behavioral models

to describe the dynamics of decision-making processes.

1.2 Single neuron correlates of evidence accumulation for

decision-making

Neural correlates of evidence accumulation for decision-making have been found

throughout the brain, but the neural computations underlying this process remain unclear

(Shadlen & Newsome, 1996; Gold & Shadlen, 2000; Yang & Shadlen, 2007; Hanks et al.,

2015; Britten & Shadlen, 1992; Mante et al., 2013; Horwitz & Newsome, 1999; Gold &

Shadlen, 2007; Roitman & Shadlen, 2002). The posterior parietal cortex (PPC) has

emerged as a prime candidate region for this process, in large part due to its extensive

connections to both sensory and motor regions (Blatt et al., 1990) and a variety of studies

in non-human primates (Bisley & Goldberg, 2010; Gold & Shadlen, 2007; Andersen &

Cui, 2009). Much of this work has focused on the lateral intraparietal area (LIP), a region

within the PPC which exhibits substantial saccade-related activity (Bisley & Goldberg,

2010; Gold & Shadlen, 2007). The majority of such studies have used variants of
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two-alternative forced choice (2AFC) random-dot motion tasks, in which monkeys view a

stimulus with varying amounts of net motion due to the biased motion of a set of rapidly

moving dots. Following a delay of several seconds, monkeys are instructed to make a

saccade toward one of two targets, one of which is within the receptive field of a recorded

LIP neuron (Shadlen & Newsome, 1998, 1996). In response to their preferred direction of

motion during this task, LIP neurons increase their firing rate steadily in a ramping

fashion throughout stimulus presentation and maintain a high firing rate throughout the

delay period before returning to a baseline firing rate after the saccade is made (Shadlen &

Newsome, 1996). Similar results have also been observed in the PPC of rats performing

evidence accumulation tasks (Hanks et al., 2015) as well is in other brain regions,

including the superior colliculus and the prefontal cortex (Mante et al., 2013; Horwitz &

Newsome, 1999).

While causal experiments have been difficult to perform, several studies have shown that

the PPC influences decision-making. For example, microstimulation of LIP during stimulus

presentation has induced biases in both the direction and the reaction time of the saccade

that were correlated with the total accumulated evidence, implying a causal role for LIP

in evidence accumulation during decision-making (Gold & Shadlen, 2000; Hanks et al.,

2006). In one study, monkeys performed an evidence-accumulation task in which they

viewed several discrete pieces of evidence (different shapes), each of which was associated

with a fixed reward probability on one of two targets (Yang & Shadlen, 2007). To make

accurate perceptual decisions and maximize their reward probability, the monkeys had to
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integrate themultiple pieces of evidence. During this task, LIP neurons exhibited changes of

activity correlated not only with which target each piece of evidence preferred, but with the

magnitude of the reward probability change as well. These results suggest that neurons in

LIP not only integrate evidence over time, but also calculate a sum of probabilities favoring

possible alternatives to best compute an accurate decision.

These studies and others have led to hypotheses that LIP accumulates evidence and

contains the decision variable described in decision-making models (Mazurek, 2003). One

key prediction of these models is that stronger evidence should increase the slope of the

decision variable curve and result in a faster decision. To test this, a reaction time version

of the random-dot motion task was developed in which monkeys can respond at any time,

thereby providing a rough estimate of decision speed (Roitman & Shadlen, 2002). During

this task, the slope of the LIP neurons’ increase in firing rate is steeper during trials in

which the monkey’s reaction time is lower and in which the motion coherence is higher

(stronger evidence), suggesting that the faster reaction time is due to stronger evidence

causing the decision variable to reach the decision bound more rapidly. Activity of LIP

neurons during a reaction time version of the discrete shapes task was also consistent with

the predictions of drift-diffusion models (Kira et al., 2015).

1.3 Sensory, motor, or both?

While the work described above has effectively demonstrated that LIP contains activity

correlated with a developing decision, it has been difficult to assign an exact function to
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these changes in firing. In particular, the PPC has been found to contain activity correlated

with both movement intention (Andersen & Cui, 2009; Buneo & Andersen, 2006; Cui &

Andersen, 2007; Quian Quiroga, 2006) and spatial attention (Bisley & Goldberg, 2010;

Bisley, 2003; Ipata et al., 2006; Balan, 2006; Kusunoki et al., 2000). In the movement

intention view, activity in the PPC primarily predicts motor actions, rather than the visual

cues. In contrast, the spatial attention view proposes that activity in the PPC is best

explained by attention to the visual stimuli, independent of the resulting motor action.

This ambiguity is in large part due to the fixed relationship between the decision and the

motor plan in the majority of previous studies (e.g. in the random-dot motion task, net

motion to the left always requires a saccade to the left for reward) (Freedman & Assad,

2011). To test whether the PPC can represent an abstract decision, several groups have

designed behavioral tasks with a delayed-match-to-sample design in which there is a

variable relationship between the motor response and the decision (Freedman & Assad,

2006; Fitzgerald et al., 2011; Bennur & Gold, 2011). Importantly, these tasks feature a

period of time in which the animal must make a perceptual decision without knowing how

to report the decision, allowing for the isolation of decision related neuronal activity from

activity related to motor preparation. These studies have demonstrated that LIP contains

activity correlated with categorization of visual stimuli independent of motor actions

(Freedman & Assad, 2006; Fitzgerald et al., 2011). Additionally, during a modified

version of the random-dot motion task with a delayed-match-to-sample design, activity in

LIP correlated with a developing, abstract perceptual decision similar to that observed in
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the traditional random-dot motion task (Bennur & Gold, 2011). Taken together, these

studies suggest that, while it may play a role in motor planning as well, LIP is involved in

performing computations necessary for abstract decision-making.

1.4 Heterogeneity across neurons and variability across trials

Due primarily to technical limitations, the majority of the results described above were

derived from pseudo-populations in which each cell’s activity was averaged across all

trials with similar stimuli and/or choices. In many cases, activity was further averaged

across cells to construct an activity trace averaged across both neurons and trials.

Additionally, such datasets are often constructed from a biased sampling cells, with only

those neurons that exhibited persistent activity during a delayed saccade task included.

While these techniques have revealed important features of the neuronal activity, they also

obscure potentially meaningful heterogeneity across neurons and trials. In fact, recent

studies that have analyzed the activity of individual neurons during decision tasks have

found that the dynamics of single neuron responses are highly diverse (Meister et al.,

2013; Park et al., 2014; Jun et al., 2010; Raposo et al., 2014; Mante et al., 2013; Rigotti

et al., 2013). Many of these neurons exhibited complex response dynamics. For example,

some neurons responded to different features of the stimulus at different times in the task,

while many others had responses that were seemingly unrelated to task features. What

role, if any, such heterogeneity across neuronal populations may play in the computations

underlying decision tasks, however, remains unclear.
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Much of the reason that previous studies of neuronal activity during decision-making have

relied upon pseudo-populations has been due to the difficulty of recording from multiple

neurons simultaneously. However, the emergence of new technologies, including

multi-electrode arrays and optical imaging techniques, has allowed for many studies to

probe the activity of neuronal populations on single trials. These studies have revealed

that the activity of many neurons is weakly, but positively correlated on a trial-to-trial

basis, even after removing correlations due to task differences (Zohary et al., 1994). These

correlations, often termed ‘noise correlations’, have been observed across cortex in both

anaesthetized and behaving animals (Cohen & Kohn, 2011). From the perspective of

optimal coding of information, the role of these correlations can be difficult to parse

(Averbeck et al., 2006). For example, if neurons with similar tunings to stimuli, correlated

noise will make stimulus decoding more difficult (Zohary et al., 1994). In contrast,

correlated noise between neurons with opposite stimulus tuning can aid stimulus decoding

(Romo et al., 2003). These correlations have been found to be modulated by visual

attention (Cohen & Maunsell, 2009), stimulus onset (Churchland et al., 2010), and

associative learning (Jeanne et al., 2013), suggesting that correlated trial-trial variability

may contribute to neuronal computation. As with neuronal heterogeneity, however, the

structure of such inter-neuronal correlations as well as what role they might play in

neuronal computation is still unknown.
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1.5 Transient or persistent activity dynamics?

The majority of decision-making studies have found neurons to be active throughout the

trial. However, a variety of recent studies have found neurons which are active only

transiently, at specific times during a behavior (Harvey et al., 2012; Crowe et al., 2010;

Pastalkova et al., 2008; Fujisawa et al., 2008). In one recent study, populations of neurons

in the PPC were simultaneously recorded while mice performed a navigation-based

decision task in virtual-reality (Harvey et al., 2012). During this task, neurons were active

only briefly and at specific times in the trial (e.g., during the beginning of the delay), with

a small set of neurons having clear choice selectivity. Across the population, the activity

of individual neurons tiled the entire trial duration, leading to the description of these

dynamics as ‘sequences’. Similar sequences of neuronal activation have been found in the

hippocampus (Pastalkova et al., 2008) and prefrontal cortex of rodents (Fujisawa et al.,

2008), as well as in LIP of non-human primates (Crowe et al., 2010). However, most of

these studies analyzed the trial-averaged activity of neuronal subsets during relatively

simple decision tasks and how the activity of neuronal populations may change from

moment-to-moment on single trials during more complicated decision tasks involving

evidence accumulation over time remains vague.

The discrepancy between the persistent activity traditionally reported and the transient

activity patterns more recently observed could be caused by differences in task design,

cortical layer, and model organism (i.e., non-human primates vs. rodents). However, each
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of these possibilities seems unlikely to individually account for this difference. For

example, while many of the studies that reported transient activity were performed in

rodents (Harvey et al., 2012; Pastalkova et al., 2008; Fujisawa et al., 2008), transient

activity has also been observed in non-human primates (Crowe et al., 2010) and in

songbirds (Hahnloser et al., 2002). Moreover, neurons with ramping, persistent activity

patterns have also been reported in rodents (Hanks et al., 2015; Raposo et al., 2014).

Many of the rodent studies were also performed while animals performed

navigation-based tasks (Harvey et al., 2012; Pastalkova et al., 2008; Fujisawa et al., 2008),

yet transient activity patterns have also been observed during stationary tasks (Crowe

et al., 2010). Together, these results suggest that both transient and persistent activity

dynamics are likely present in the brain.

How these sequential activity patterns are generated by neuronal circuits remains unclear,

though a variety of models have proven capable of generating such dynamics. In the

simplest models, neurons are connected in a feedforward chain, such that neurons which

fire at a given time point in the sequence preferentially activate the neurons at the next

time point. Theoretical work has demonstrated that, if properly tuned, such chains can

sustain a memory of a stimulus for a prolonged time period (Goldman, 2009). These

networks, however, require a highly constrained network architecture. In contrast,

recurrently connected networks subjected to an appropriate learning rule have also been

shown to be capable of generating transient dynamics (Rajan et al., 2016; Klampfl &

Maass, 2013). While these models often make clear predictions about the connectivity of
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neurons with different activity patterns, these predictions have proved challenging to test

experimentally.

1.6 Neural trajectories and methods for analyzing high-dimensional

neural data

These studies have led to the conceptualization of neuronal population activity at a given

time as a point in the n-dimensional space defined by the activity of each recorded neuron

(where n is the number of neurons) (Harvey et al., 2012; Mazor & Laurent, 2005;

Briggman, 2005; Raposo et al., 2014; Churchland et al., 2012). As neuronal population

activity changes from moment-to-moment within a trial, it moves through this space,

creating a trial-specific neuronal ‘trajectory’. The path taken by these neuronal

trajectories, as well as the location of the activity pattern in the n-dimensional space, may

represent task-relevant information. Importantly, analyses based on the concept of neural

trajectories allow for the analysis of the moment-to-moment changes in neuronal

populations on single trials. When animals perform behaviors, they must do so based on

the single trial activity of neuronal populations. However, the majority of studies of

decision-making and other behaviors have analyzed neuronal activity as averages across

neurons and trials, potentially obscuring valuable information about cortical dynamics that

may be present in the correlations between neurons. The methods underlying these

analyses, while challenging and comparatively new, can also scale to accommodate large

populations of neurons. This will become increasingly important as the simultaneous
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recording of larger and larger numbers of neurons becomes feasible.

However, the power of these analysis comes at the cost of complexity. As the number of

dimensions in the data increases (e.g., as more neurons are added), it becomes more and

more difficult to understand the dynamics of the system. As an intuitive example of this

issue, it is trivial to visualize a one-, two-, or three-dimensional system. A

four-dimensional system can also be visualized, though it is more difficult (as a movie of

how a three-dimensional system changes over time). However, the raw visualization of

any system with more than four dimensions becomes extremely challenging. Additionally,

the number of possible configurations of a system (e.g., the number of possible neuronal

activity patterns) increases exponentially with the number of dimensions. This challenge

has been termed the ‘curse of dimensionality’ (Bellman, 1961).

A variety of techniques have been developed to interpret high-dimensional data. In

neuroscience, dimensionality reduction methods have been especially popular. These

methods attempt to find structure in the data that can be represented with fewer

dimensions than there are neurons. They include unsupervised techniques such as

principal components analysis (PCA) and factor analysis (Murphy, 2012; Harvey et al.,

2012; Briggman, 2005; Mazor & Laurent, 2005), as well as targeted techniques which

attempt to find dimensions relevant for specific task variables (Mante et al., 2013). While

dimensionality reduction is an essential tool, more powerful techniques will need to be

developed and applied to neuronal data to decipher neuronal population dynamics.
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1.7 Neural algorithms for memory and decision-making

1.7.1 Winner-take-all models

A variety of computational models have been developed to explain the neural activity

dynamics observed during evidence accumulation and other decision tasks. However,

so-called ‘winner-take-all’ models have become the most widespread (Wong & Wang,

2006; Wang, 2012; Machens, 2005; Wang, 2002). In these models, distinct, recurrently

connected pools of neurons each receive inputs in favor of one of several behavioral

alternatives. Each pool of neurons indirectly inhibits each of the other pools. As a result,

as one pool receives input in favor of its preferred alternative, its firing rate increases,

increasing both its recurrent excitatory drive and increasing the inhibition of competing

pools of neurons. Inhibition of the competing neuronal pools relieves the inhibition of

those pools onto the preferred pool, further increasing its firing rate. This process results

in a positive feedback loop, eventually leaving only one pool of neurons active. Hence,

there can only be one ‘winner’. Winner-take-all models have successfully explained a

large variety of behavioral and neuronal results (Wang, 2008).

However, these models have several disadvantages. First, they require a highly

constrained network connectivity, with precise connectivity patterns of each input to each

pool of neurons as well as within and across pools. How such a constrained network

architecture might be learned, however, especially through relatively sparse rewards in

naturalistic environments, remains unknown. Second, because of connectivity constraints,
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winner-take all models are specific to individual tasks. A unique winner-take-all circuit

would therefore be necessary for each unique task. While a generalized winner-take-all

circuit in which inputs for different tasks are routed to the same computational circuit

might be possible, such networks have not been thoroughly explored. Third, these models

generalize poorly to decision-making with multiple alternatives. While winner-take-all

models have been adapted to decisions with three and four alternatives, they do so at the

cost of substantially increased complexity (Churchland et al., 2008; Churchland &

Ditterich, 2012; Niwa & Ditterich, 2008). Finally, winner-take-all models predict that

neurons involved in the decision-making process will have highly homogeneous activity

dynamics, both across neurons and across trials. However, a variety of studies have found

heterogeneous and highly variable neurons that nevertheless represent decision-related

information (Meister et al., 2013; Park et al., 2014; Jun et al., 2010; Raposo et al., 2014;

Mante et al., 2013; Rigotti et al., 2013).

1.7.2 Reservoir computing

The computations necessary for short-term memory and decision-making may also be

performed by networks exemplified by chaotic and complicated dynamics. In reservoir

networks (also termed liquid state machines or echo-state networks), the network activity

is determined as a function of both incoming sensory inputs and the ongoing activity of

the network (Jaeger & Haas, 2004; Maass et al., 2002; Buonomano & Maass, 2009;

Buonomano & Merzenich, 1995; Verstraeten et al., 2007). As a result, the effect of the

same input on the network activity may be different depending on the network activity
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present immediately prior to the input’s presentation.

One intuitive way to conceptualize such networks is to imagine the surface of a pond. If

a black pebble is dropped from a given height, a specific set of ripples will emerge on the

surface of the pond. If the pond is allowed to return to equilibrium and the same pebble

is dropped from the same location, the same set of ripples will occur. If, however, a red

pebble is dropped one second before the black pebble, the ripples occurring as a result of

the red pebble will interact in some complicated fashion with the ripples created by the

black pebble, generating a unique pattern of ripples. Importantly, this pattern depends on

a large variety of factors, including the features of the pebbles themselves, the locations

from which they were dropped, and the time interval between them. All of this information

might be represented simultaneously in the pattern of ripples generated. In the context of a

neural circuit, the surface of the pond would represent the neural circuit itself, the pebbles

inputs to the network, and the ripples the precise pattern of activity present in the network

at a given time.

Reservoir networks therefore contain a ‘reservoir’ in which information about inputs (e.g.,

sensory stimuli) ‘echoes’ for some period of time as it gradually decays. These models do

not require that the various activity patterns which represent an input look similar to one

another; in contrast, these activity patterns may be highly different, with the differences

caused by the representation of information related to other inputs or by differences in

time. Information about a given input would therefore not be represented explicitly by the

activity of individual neurons (e.g., high activity means input A, while low activity means
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input B). Instead, information would be represented implicitly by the pattern of activity in

the high-dimensional activity space. This information could be read out by downstream

networks which project the high-dimensional activity onto a single dimension which best

separates specific inputs (Hoerzer et al., 2014; Jaeger & Haas, 2004; Sussillo & Abbott,

2009; Buonomano & Maass, 2009; Maass et al., 2002; Natschläger & Maass, 2005).

Reservoir networks could therefore represent multiple streams of information

simultaneously. Additionally, such networks have been shown to be capable of producing

transient, sequential dynamics as have been observed previously (Rajan et al., 2016;

Klampfl & Maass, 2013).

Reservoir computing makes several testable experimental predictions. First, because the

ongoing network activity influences how inputs are represented at later time points,

trial-trial variability in network activity should be predictable based on the variability at

earlier time points in a trial. Second, events in previous trials should influence the

representation of events in the current trial when the time interval between trials is

sufficiently short. A variety of studies, across cortical areas, have demonstrated that

events from the previous trial can be decoded from neuronal activity during the current

trial (Bernacchia et al., 2011; Donahue & Lee, 2015; Seo et al., 2007; Seo & Lee, 2007;

Nikolić et al., 2009; Klampfl et al., 2012; Seo et al., 2009; Sugrue et al., 2004; Chaudhuri

et al., 2015; Murray et al., 2014). Third, in this framework, the representation of inputs

would occur generally, such that a memory of all inputs is maintained, rather than specific

inputs being privileged. Network activity in the reservoir should therefore be independent
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of how it is read out. In a recent study, monkeys were trained to perform a variant of the

random-dot motion task in which the stimulus varied along two dimensions

independently: motion and color (Mante et al., 2013). On alternating trial blocks,

monkeys had to distinguish either the coherent motion (as in traditional random-dot

motion tasks) or the coherent color. Recording from neuronal populations in prefrontal

cortex, the authors found that both color and motion were represented simultaneously,

with only subtle differences in their representation during different trial blocks, as would

be predicted by reservoir computing. On different trial blocks, different readout networks

may have been recruited to discriminate either color or motion. Finally, because multiple

sources of information would be represented simultaneously in a general-purpose manner,

information in reservoir networks is likely to be distributed implicitly across populations

of neurons, rather than explicitly across sparse subsets of neurons. Sparse representation

of information could still be consistent with reservoir networks; such a representation

would, however, likely require a more constrained network architecture.

1.8 Methods for recording from multiple neurons simultaneously

Most studies of the PPC have been performed using single-cell recordings. However,

methods have been recently developed to record from large populations of neurons

simultaneously behaving animals (Miller & Wilson, 2008). To isolate single units, sets of

independently movable tetrodes have been implanted in rodents, allowing for the

recording of up to 20 units simultaneously from freely moving rodents (Kepecs et al.,
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2008; Davidson et al., 2009). Alternatively, multi-electrode arrays have been developed

which can be used to record the activity of up to 96 isolated units simultaneously

(Churchland et al., 2012). However, these recordings provide little anatomical

information about the recorded units, recordings cannot be limited to cells of a specific

subtype, and the same neurons can only rarely be recorded from over several recording

sessions. Optical imaging techniques using two-photon laser scanning microscopy

(2PLSM) and genetically encoded calcium indicators (GECIs) (Chen et al., 2013; Looger

& Griesbeck, 2012) can overcome many of these limitations, allowing the simultaneous

recording of the activity of hundreds of neurons (Dombeck et al., 2010; Harvey et al.,

2012; Huber et al., 2012; Li et al., 2015). This technique provides two key advantages

over other techniques for recording large populations of neurons in awake, behaving

animals. First, imaging provides anatomical information about the cells recorded from,

allowing experimenters to ask questions about anatomical segregation of neurons based

on their activity patterns and for identification of specific cell types either in vivo or

post-mortem. Second, because this technique can be performed with chronically

implanted cranial windows, the same population of neurons can be recorded from over

multiple recording sessions. Third, while single-unit electrophysiology often results in a

higher sampling of task-related and high firing neurons, optical imaging provides a

relatively unbiased sampling of neurons. Fourth, optical imaging allows for the sampling

of a large number of cells from a local region, while traditional recording methods sample

cells over a much larger region. One caveat, however, is that genetically encoded calcium
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indicators exhibit a non-linear relationship between spike number and fluorescence

change, making it difficult to determine the precise number of spikes fired by a neuron.

There is, however, a clear general relationship between fluorescence and spiking activity

(Tian et al., 2009; Akerboom et al., 2012; Dombeck et al., 2010; Chen et al., 2013).

Additionally, a variety of deconvolution algorithms to extract spiking information from

the GECI signal, with increasing success (Vogelstein et al., 2010; Pnevmatikakis et al.,

2016; Theis et al., 2014). Together, these features make optical imaging a powerful

method for recording the simultaneous activity of large populations of neurons in vivo.

1.9 A virtual reality paradigm for mouse behavior

The majority of studies focused on decision-making have used head-restrained, stationary

monkeys who respond by performing a saccade, a reach, or a button press (Gold &

Shadlen, 2007; Bisley & Goldberg, 2010; Freedman & Assad, 2006, 2011; Buneo &

Andersen, 2006). These tasks, however, are low throughput and cannot yet be paired with

optical imaging techniques which enable the recording of activity from hundreds of

neurons simultaneously. A virtual reality system for mice was recently developed which

can overcome these technical limitations to understand microcircuit function during

decision-making (Harvey et al., 2009). In this system, a head-restrained mouse is

surrounded by a large screen on which a visual virtual environment is displayed. By

running on a spherical treadmill, the mouse can navigate through the virtual environment

– effectively allowing the mouse to run a virtual maze. Because the mouse’s head remains
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stationary, this paradigm can be paired with advanced optical imaging techniques. This

virtual reality system therefore allows mice to perform complex behavioral tasks

employing navigation while advanced optical imaging techniques are used to record from

large populations of neurons simultaneously.
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Chapter 2

Development of novel virtual-navigation decision-making

behaviors

2.1 Introduction

In order to understand how cortical circuits perform the computations underlying decision-

making, we must be able to record from and manipulate these circuits during decision tasks.

We therefore need to develop well-characterized and controlled behaviors which enable

us to accurately attribute changes in neuronal activity to specific features of the decision-

making process.

Here, we have developed three novel virtual reality (VR) decision tasks based on a T-maze.

In the first task, mice are required to accumulate six discrete evidence cues to determine

whether to turn into the left or right arm of the T-maze for a reward. In the second task,

which has a delayed-match-to-sample design, mice are presented with only one cue, but the

association between the cue and the turn direction can vary from trial to trial and is unknown

to the mouse during cue presentation and during a delay period of several seconds. This
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Figure 2.1 | Schematic of virtual reality behavior system.

task therefore allows for the dissociation of activity related to sensory information from

that related to motor planning (Freedman & Assad, 2011). The third and most difficult task

incorporates components of both previous tasks to create an evidence accumulation task

with a delayed-match-to-sample design.

2.2 A virtual reality system for mouse behavior

To develop these behaviors, we have used a modified version of the previously developed

VR system (Harvey et al., 2009, 2012; Dombeck et al., 2010). In this system,

head-restrained mice are surrounded by a large, half-cylindrical screen on which a

first-person view of a virtual environment is presented (Figure 2.1). By running on a

spherical treadmill, mice can navigate through this environment, allowing them to

perform behavioral tasks for a reward.

The VR system has several key advantages. First and most importantly, the use of virtual

environments enables the rapid prototyping of task designs, because virtual environments

can easily be changed, even within a behavioral session. Second, the comparatively small
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amount of space required for VR system as well as relatively short training sessions

(usually less than an hour) allow for the training of many mice in parallel. Third, because

the contents environment are completely controlled by the experimenter, the only stimuli

present in the virtual environment are those which are intentionally included. Finally,

because mice are head-restrained during VR behaviors, this system can be paired with

optical imaging (Harvey et al., 2012; Dombeck et al., 2010), enabling the recording and

manipulation of large populations of neurons during behavior, as well as whole-cell

electrophysiology (Harvey et al., 2009; Domnisoru et al., 2013).

2.2.1 Detailed description

First-person images of the virtual environment were back-projected onto a half-cylindrical

screen with a diameter of 24 inches and a depth of 12 inches using a PicoP microprojector

(MicroVision Inc.). Images were transformed to account for the shape of the screen. The

spherical treadmill was a custom 8-inch ball made of open-cell Styrofoam foam. The

spherical treadmill was supported by air to allow free rotation. Movement of the spherical

treadmill was recorded using an optical sensor (Logitech MX518) positioned beneath the

ball. Forward/backward translation in VR was controlled by changes in pitch (relative to

the mouse’s body), and rotation in VR was controlled by changes in roll (relative to the

mouse’s body). This is different from previous studies (Harvey et al., 2012, 2009;

Dombeck et al., 2010), in which rotation in VR was controlled by changes in yaw rather

than roll (relative to the mouse’s body). This modification significantly improved the

mouse’s control of rotation in the virtual environment. The recorded behavioral
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parameters were the mouse’s position in the virtual environment (x/y position), the

rotational velocity of the spherical treadmill (about the pitch and roll axes relative to the

mouse’s body), and the mouse’s view angle in the environment. Virtual environments

were built and run using the MATLAB-based software ViRMEn (Virtual Reality Mouse

Engine) (Aronov & Tank, 2014).

2.3 Fixed association evidence accumulation task

2.3.1 Task description

We developed a navigation-based evidence accumulation task for head-restrained mice

based on a T-maze in VR (Figure 2.2a-b). While running down the stem of the T with

predominantly gray walls, mice encountered six visual cues (white wall segments with

black dots) at fixed locations. Each cue could appear on either the left or right wall, and

only one cue was visible at a time. Cue visibility was determined by the mouse’s position

such that the duration of each cue was determined by the mouse’s running speed. On

average, each cue was visible for ∼0.8 seconds. To receive a reward, mice had to

25



determine if more cues were presented on the left or the right and, after a short stretch of

maze without additional cues (90 cm, ∼1 second), turn at the T-intersection toward the

direction that had more cues. Between trials, the task difficulty was modulated by varying

the difference between the number of left and right cues, or the net evidence. Within each

trial, there were six total cues, with between zero and six cues presented on the left and the

remainder on the right. For example, a trial with six cues on the left and no cues on the

right (6-0 left, net evidence: 6 left) was easy, while a trial with two cues on the left and

four cues on the right (2-4 right, net evidence: 2 right) was much more difficult. The

sequence of cues was determined randomly for each trial of a given net evidence. To

perform well on this task, mice must accumulate multiple, discrete pieces of evidence

across long timescales (∼5-6 seconds) and remember their choice during a short delay

(∼1 second). By accumulating multiple pieces of evidence, mice were able to perform

this task at high accuracy stably for many days (Figure 2.2c).

2.3.2 Training procedure

Following at least two days of water restriction, mice began behavioral training. Behavioral

sessions were performed six days per week and lasted 45-60 minutes. Mice received liquid

rewards through a lick spout (4μl/reward, 10% sweetened condensed milk). Mice were

trained to perform the evidence accumulation task over a series of eight mazes (Figure 2.3).

In mazes 1-5, mice learned to steer in the virtual environment and to associate visual cues

with a reward. In mazes 6-7, mice learned to remember the location of the cue during a

brief delay period (∼1 second). In maze 8, the initially continuous white cue on either the
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left or the right was divided into 6 discrete cues, all of which were on the same side (e.g.

6-0 left and 0-6 right trials). Cue visibility was locked to the mouse’s position such that

only one cue was visible at a time. There was no delay between the offset of one cue and

the onset of the next cue. At this point, the probability of more difficult conditions (e.g. 5-1

trials) was gradually increased using the probability distributions in Figure 2.3b. Within

each difficulty, the precise pattern of evidence was randomly determined before each trial.

On 3-3 trials, the rewarded location was selected randomly. Trials were completed when

the mouse turned into one of the arms of the T-maze. Following the completion of the trial,

the screen changed to black for the duration of the inter-trial interval (ITI; 2 s for correct

choice and 4 s for incorrect choice).

In some cases, mice developed biases such that they favored left or right choices. To

discourage these biases, we implemented bias correction throughout training. Bias

correction was not used during the imaging sessions described in Chapter 3. On each trial,

we determined a probability that a trial would be a right choice trial. The probability was

set to be equal to the fraction of left choices over the previous 20 trials, such that if the

mouse had made many left or right choices previously then the opposite choice trial was

likely selected. Once mice reached expert levels, prolonged biases rarely developed. To

maintain a high level of performance throughout the session, we introduced a small

fraction of easy trials (‘crutch trials’) interleaved with the evidence accumulation trials.

Crutch trials were identical to trials from maze 5 (Figure 2.3) in which no evidence

accumulation or delay were present. The probability of a crutch trial on a given trial was
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equal to the fraction of error trials over the previous 20 trials. We found that the use of

crutch trials was essential to establishing stable behavior both within a single session and

across multiple sessions.

For mazes 1-3, the criterion for advancement to the next maze was the mouse’s number of

completed trials per minute, independent of performance (> 7 trials/min for advancement).

Mice on mazes 4-5 were advanced to the next maze following one day of ≥ 90%

performance. Mice on mazes 6-7 were advanced following three days of ≥ 90%

performance. On maze 8, mice were advanced after three days of ≥ 85% performance on

easy trials (6-0 and 5-1 trials) and ≥ 65% performance on hard trials (4-2 trials). At this

stage of training, mice were sensitive to the rapid introduction of difficult trials, and

performance on easy trials was closely monitored. If performance on easy trials fell below

80%, mice were moved to an easier distribution of maze trials. For this reason, we were

only able to introduce 3-3 trials in some of the mice. Training in total required ∼30-60

daily training sessions (Figure 2.3d).

2.3.3 Behavioral characterization

Mice could have achieved intermediate performance on this task by only paying attention

to a single cue. A mouse perfectly following this strategy would be expected to make a

correct choice on 100% of 6-0 trials (because every cue matches the correct choice), 83%

on 5-1 trials (because each cue has a 5/6 chance of matching the correct choice), and 67%

on 4-2 trials. The psychometric functions of each mouse would therefore be
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approximately linear. If, however, mice used more than one cue to make their decisions,

their psychometric functions should look approximately sigmoidal. We therefore fit the

behavioral performance as a function of number of left cues with a logistic function

(assuming more than one piece of evidence used per trial) and a linear function (assuming

a single piece of evidence used per trials) using maximum-likelihood estimation. To

compare linear and logistic model fits each behavioral day of each mouse was fit

separately by both models, and the distribution of root mean squared errors (RMSE) was

compared with a two-sample Student’s t-test. Across mice, the logistic function fit the

data significantly better than the linear function (Figure 2.4a-b), indicating that mice used

more than one piece of evidence per trial. It is worth noting that this analysis does not

demonstrate that mice used all six cues; it only shows that mice used more than one.

Unfortunately, the precise analysis of each mouse’s strategy was not possible due to

limited trial numbers, especially on trials with ambiguous evidence.

Because mice did not perform the task optimally, it is possible that they weighted some

evidence cues more than others. To test if cues were weighted equally, we used

multivariate linear regression, with the behavioral choice as the dependent variable and

the cue identities as the explanatory variables. To include large numbers of trials, multiple

consecutive sessions (mean: 9, range: 7-12) were combined. We found that all cues had

significant regression coefficients with a preference toward earlier segments, suggesting

that mice accumulated evidence with a primacy bias (Figure 2.4d). To confirm this result,

we performed a complementary analysis in which we analyzed the location of minority
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cues (cues indicating the incorrect choice) on correct and error trials. We found that

minority cues were uniformly distributed on correct trials, but more likely to appear in

early cue positions on error trials (Figure 2.4e-f). This results suggests that mice were

more likely to make an error when a minority cue was present as one of the first cues.

Mice exhibit a primacy bias even though the optimal strategy for this task is to take into

account all six cues (as long as at least one trial is present in which the sixth cue provides

information). This suggests that mice must have placed some weight on making decisions

early, before all six cues had been presented. Interestingly, this unequal weighting of cues

was not present in all mice, as one mouse (colored in red in Figures 2.2 and 2.4) weighted

all cues approximately equally.

We also found there to be a notable correlation between the net accumulated evidence and

the mouse’s view angle (Figure 2.4g). As a result, the view angles of left and right turn trials

diverged well before the end of the cue period (Figure 2.4h). This correlation highlights

one of the downsides of closed-loop tasks in which the association between sensory cues

and choices is fixed: animals may change their behavior, and hence, the features of the

sensory cues in response to prior sensory cues, introducing undesirable correlations between

sensory and motor variables. These correlations can make the precise interpretation of

neural responses challenging. As discussed in more detail in Chapter 3, we were therefore

careful to ensure that neural results could not be wholly explained by these differences in

behavior.

To test whether there was a relationship between the mouse’s choice on a trial and the
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outcome of the previous trial, we used a multivariate logistic regression with interactions

with the previous trial’s choice and reward outcome (whether the previous trial was correct

or incorrect) as binary explanatory variables and the mouse’s choice on the test trial as the

response variable. We combined multiple consecutive sessions (mean: 9, range: 7-12) to

include large numbers of trials. Consistently, this model was unable to predict the mouse’s

choice, suggesting that there was no easily detectable behavioral relationship between the

mouse’s choice and the outcome of the previous trial (R2: 0.02± 0.01, mean± s.e.m across

datasets, p > 0.05).

2.4 Delayed-match-to-sample task

2.4.1 Task description

This task is a navigation-based decision task with a non-fixed association between sensory

evidence and choice. As with the fixed association task described above, this task is

designed for head-restrained mice and is based on a T-maze in VR with two towers

positioned behind the arms of the T (Figure 2.5a-c). During the cue period at the

beginning of the trial, mice encounter an extended stretch of wall which is either

predominantly black or white with dots of the opposite color. As mice run down the stem

of the T, they enter a several second delay period in which the walls are gray, independent

of the cue identity. During both the cue and delay periods, the arms and towers at the end

of the T-maze are gray. At the conclusion of the delay period, the coloring of one of the

arms (along with its corresponding tower) changes to white with black dots while the
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other changes to black with white dots. To receive a reward, the mouse must turn toward

the arm which matches the cue presented during the cue period. There are therefore four

trial configurations (two cues combined with two turns). Critically, the association

between the cue and the rewarded turn is variable from trial to trial, such that during the

cue and delay periods, the mouse does not know which direction it will need to turn for a

reward. Thus, mice must remember the cue during the delay period, abstracted from a

motor plan. The delayed-match-to-sample design of this task therefore allows the

separation of neuronal signals related to the memory of sensory cue from those related to a

motor plan (Freedman & Assad, 2011).

Mice were able to perform this task successfully across all four trial configurations (e.g., a

black cue with a rewarded left turn; Figure 2.5d-f). The consistent performance across trial

conditions suggests that mice were not significantly biased. For example, if mice exhibited

a bias toward left choices, performance would be high on conditions in which left choices

are rewarded (i.e., black left and white left) and low on conditions in which right choices

are rewarded (i.e., black right and white right). Alternatively, mice may have exhibited a

cue-specific bias, in which they are more likely to turn left on black cue trials and right

on white cue trials. This type of bias would result in high performance on those trials, but

low performance on opposite turn trials. While weak versions of these biases appeared (for

example, the mouse displayed in Figure 2.5f had a weak left choice bias), these biases were

not significant. Interestingly, mice often performed well on three out of the four conditions,

suggesting that mice did not learn an abstract rule to match the cue presented during the cue
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period to the arms, but instead memorized configurations (e.g., when the cue is white and

white is on the left, go left).

2.4.2 Training procedure

Following at least two days of water restriction, mice began behavioral training.

Behavioral sessions were performed six days per week and lasted 45-60 minutes. Mice

received liquid rewards through a lick spout (4μl/reward, 10% sweetened condensed

milk). Mice were trained to perform the delayed-match-to-sample task over a series of

eight mazes (Figure 2.6). In mazes 1-5, mice progressed through a series of mazes of
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increasing length which taught them to steer in the virtual environment and to associate

visual cues with a reward. This progression is similar to that used in the training for the

fixed association evidence accumulation task, but the mazes used to train the

delayed-match-to-sample task were structured slightly differently. In each of these mazes,

both walls of the stem contained either the white or black cue and the arms contained both

cues, with one on the left and one on the right. The correct arm, which matched the cue

present in the stem of the maze, was indicated by a tower colored with the same cue which

was located behind the rewarded arm. The unrewarded arm did not have a tower behind it.

Mice could therefore achieve perfect performance on these mazes by turning toward the

arm with a tower without paying attention to the cues on the walls of the T-maze. The trial

configuration was randomly selected from the four possibilities prior to each trial.

Importantly, all four configurations were present during these early mazes to prevent mice

from learning a spurious association between a cue and a choice (e.g., turn left when a

black cue is present).

In maze 6, an additional tower was added behind the unrewarded arm as well, forcing mice

perform a non-delayed-match-to-sample in which they must turn toward the arm whose

coloring matches the cue presented in the stem of the maze. When we first attempted this

transition, mice were unable to learn it, rapidly dropping to chance performance and picking

up strong biases (e.g., always turn left). To ease mice into this transition, consecutive trials

were ‘paired’, such that a trial with a single tower (as in maze 5) always preceded a trial with

two towers (as inmaze 6). Critically, these paired trials had the same configuration andmice
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received three times as many rewards for making a correct choice on the two tower trial.

Because consecutive trials featured the same reward location in this paired organization,

this structure may have taught mice to repeat a rewarded choice. However, we found that

mice rarely learned this strategy, and that the paired organization helped mice to rapidly

achieve high performance on maze 6, often within a single day (see cyan points in Figure

2.6c).

Maze 7 begins identically to maze 6, except visibility of the arm configuration is obscured

until mice pass the 2/3 point of the stem. However, because there is no delay period yet,

this maze still only requires a non-delayed-match-to-sample. As mice performed trials

correctly, a delay (in the form of gray walls separating the cue and arms) would slowly

appear, increasing in length as mice performed more and more trials correctly. Once the

length of the delay reached 1/3 of the stem, mice performed an

instantaneous-match-to-sample, in which the cue and arm configuration were no longer

visible simultaneously. As the delay length increased beyond this point, mice performed a

delayed-match-to-sample task with an increasingly longer delay period. Maze 8 appeared

identically to the final version of maze 7, in which the cue, delay, and turn periods each

extended for 1/3 of the maze stem.

As with the fixed association task, bias correction was introduced beginning with maze

4. Bias correction was applied to both turn direction and arm configuration independently.

Prior to each trial, the probability that a left choice would be rewarded was set to the fraction

of right choices over the preceding 20 trials. The probability that a turn towards a white arm
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would be rewarded was set to the fraction of turns toward black arms over the preceding

20 trials. For example, if a mouse turned left 75% of the time and toward black arms 75%

of the time, then the probability of the next trial being black left would be 0.0625 (0.25 ×

0.25), being black right 0.1875 (0.25 × 0.75), being white left 0.1875 (0.75 × 0.25) and

being white right 0.5625 (0.75 × 0.75). Crutch trials were introduced as well, beginning

with maze 7. Crutch trials were identical to trials from maze 6 (Figure 2.6a). As with the

fixed association task, the probability of a crutch trial was set to the fraction of error trials

over the preceding 20 trials.

For mazes 1-3, the criterion for advancement to the next maze was the mouse’s number of

completed trials per minute, independent of performance (> 7 trials/min for advancement).

Mice on mazes 4-5 were advanced to the next maze following one day of ≥ 90%

performance. Mice on maze 6 were advanced following one day of ≥ 80% performance on

trials with two towers. In maze 7, delay advancement was controlled according to the

following rule. After the first 30 trials of a session, the delay advanced by 1/60 of the stem

whenever mice performed three consecutive correct trials. Advancement was halted for at

least 30 trials every 1/6 of the maze, creating a block structure of advancement (e.g., once

the delay had reached 1/6 of the stem, 2/6 of the stem, etc.). To resume delay

advancement, mice must have performed 75% of the preceding 30 trials correctly. On

consecutive training sessions, mice were reset to the last block on which they had high

accuracy. For example, if a mouse ended a session with a delay of 27/60, the next session

would begin with a delay of 2/6. This process continued until mice had accuracy ≥ 75%
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on sessions beginning with a delay of 2/3, at which point they were advanced to maze 8.

Training in total required ∼20-40 daily training sessions (Figure 2.3d). This task was

difficult to train; only about one-quarter of the mice who begin training eventually reached

high accuracy on the final task.

2.4.3 Behavioral characterization

In contrast to the fixed association evidence accumulation task, mice did not demonstrate a

strong association between view angle and choice during the cue and delay periods (Figure

2.5g). This serves as a confirmation of the delayed-match-to-sample design of this task,

as the mouse cannot know its choice until the turn period when the arm configuration is

revealed (presuming the mouse is performing the task at high accuracy). Interestingly, there

was a weak, but noticeable, relationship between the cue and the mouse’s view angle during

the delay period. For example, the example mouse in Figure 2.5g systematically turned

toward the left during the delay period when it had seen a black cue and toward the right

when it had seen a white cue. This effect suggests that mice may have used their view angle

to remember the cue throughout the delay period, potentially complicating the interpretation

of neuronal activity during the delay period, and removing some of the advantages of a

delayed-match-to-sample task design.

To test whether there was a relationship between the mouse’s choice on a trial and the

outcome of the previous trial, we used the samemultivariate logistic regression as we did for

the fixed association evidence accumulation task. Consistent with that result, the model was
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unable to predict the mouse’s choice, again suggesting that there was no clear relationship

between the mouse’s choice on trial n and its choice on trial n+1 (R2: 0.01± 0.01, mean±

s.e.m across datasets, p > 0.05).

2.5 Delayed-match-to-sample evidence accumulation task

2.5.1 Task description

This task adds an evidence accumulation component to the delayed-match-to-sample task

(Figure 2.7a-b). As in the fixed association evidence accumulation task, as mice run down

the stem of a T-maze, they are presented with six, discrete visual cues. In contrast to the

fixed association task, these cues appear on both walls of the T-maze and can either be black

or white (with dots of the opposite color). As in the delayed-match-to-sample task, the arm

configuration is obscured (colored gray) until the conclusion of the delay period, at which
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point it becomes visible. To perform this task well, micemust decide whether there are more

black or white cues, remember the accumulated cue identity throughout the delay, and then

use the memory of the accumulated cue to make a choice toward the corresponding arm

during the turn period. As in the delayed-match-to-sample task, mice cannot know which

choice will be rewarded until the end of the delay period. Mice must therefore maintain a

memory of the accumulated cue that is independent of the eventual motor choice throughout

the cue and delay periods.

This task is extremely difficult and inefficient to train; only four out of close to one hundred

mice ever reached high accuracies on the final task, and of those, the performance of all but

one was unstable from day to day. However, several mice were able to perform this task

with high accuracy (Figure 2.7c).

2.5.2 Training procedure

The first portion of training for this task was almost identical to the training for the delayed-

match-to-sample task described in section 2.4.2. The only difference is that the cue period

was lengthened to allow for the eventual discretization into six cues. Once mice performed

the delayed-match-to-sample task stably across days with high accuracy, the cue period was

divided into six discrete cues (maze 8). As with the fixed association evidence accumulation

task, cue visibility was locked to the mouse’s position such that only one cue was visible at

a time and there was no delay between the offset of one cue and the onset of the next cue.

Initially, only 6-0 trials (trials in which all six cues were black or white) were included.
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More difficult conditions (5-1 and 4-2 trials) were gradually introduced according to the

probability distributions in Figure 2.8b. Only one mouse was ever able to successfully

perform 4-2 trials and no mice were ever able to perform 3-3 trials without performance

dropping significantly on easier trial conditions. Bias correction and crutch trials were

included as in the training for the delayed-match-to-sample task. Training in total required

∼60-90 sessions.

2.5.3 Behavioral characterization

As in the fixed association evidence accumulation task, we tested whether mice weighted

some evidence cues more than others (Section 2.3.3). In contrast to the primacy bias

observed in the fixed association task, a multivariate linear regression demonstrated that

mice weighted cues approximately equally (Figure 2.9a). The analysis of minority cue

location, however, suggested that mice had a noticeable recency bias, as minority cues

were most likely to induce an error when they were located at the fifth and sixth cue

positions (Figure 2.9b-c).

We also found there to be no systematic correlation between the net accumulated evidence

and the mouse’s view angle (Figure 2.9d). As in the delayed-match-to-sample task, the

mouse’s view angle was also unable to predict the mouse’s choice until the turn period

(Figure 2.9e). Interestingly, the difference in view angle due to cue during the delay period

that we observed during the delayed-match-to-sample task (see Section 2.4.3) was absent

during this task.

44



Cue number

-10

0

10

20

30

P
er
ce
nt
 c
or
re
ct
 tr
ia
ls
 - 
pe
rc
en
t 

in
co
rr
ec
t t
ria
ls
 w
ith
 m
in
or
ity
 c
ue

1 2 3 4 5 6

Cue number

10

20

30

P
er
ce
nt
 tr
ia
ls
 w
ith
 m
in
or
ity
 c
ue Correct trials

Error trials

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

C
ue
 re
gr
es
si
on
 c
oe
ffi
ci
en
t

Cue number
1 2 3 4 5 6

a b c

0 200 400
Maze position (cm)

-50

0

50

100

150

200
V
ie
w
 a
ng
le
 (d
eg
re
es
)

Cue: Delay Turn1 2 3 4 5 6

Black left
Black right
White left
White right

6B 4B 2B 0 2W 4W 6W
Net evidence

-20

-10

0

10

V
ie
w
 a
ng
le
 (d
eg
re
es
)

d e
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Finally, to test whether there was a relationship between the mouse’s choice on a trial and

the outcome of the previous trial, we used the same multivariate logistic regression as we

did for both previous tasks (Sections 2.3.3 and 2.4.3). Consistent with those results, the

model was unable to predict the mouse’s choice, again suggesting that there was no clear

relationship between the mouse’s choice on trial n and its choice on trial n+1 (R2: 0.01 ±

0.01, mean ± s.e.m across sessions for purple mouse, p > 0.05; 0.02 ± 0.01, mean ± s.e.m

across sessions for green mouse, p > 0.05).

2.6 Behavioral analysis suite

I have also developed the Behavioral Analysis Suite (BAS), a MATLAB-based software

package for the analysis of behavioral data. The BAS is a modular software package that

can be used both graphically and programmatically to analyze any behavioral task with a

discrete trial structure1. It has several key features. First, it enables the easy filtering of

trials according to any combination of task parameters. For example, in the delayed-match-

to-sample task described above, one could easily extract all black left trials. One can also

subset trials according to substantially more complicated filters, such as all white left trials

preceded by a white right trial, lasting longer than seven seconds, and in which the mouse

made an error. The ability to rapidly create arbitrary trial subsets was essential during the

development of the behaviors described in this chapter. Second, the BAS can be used online

to analyze and monitor ongoing behavior as well as offline to analyze past behavior. In
1The design of data structure underlying the BAS was inspired by discussions with Alex Trott and Alex
Wiltschko.
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Figure 2.10 | Behavioral analysis suite. Graphical interface of the behavioral analysis suite with arrows
indicating each component.
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offline mode, users can easily combine multiple behavioral sessions, even from different

animals. Third, filtered data and generated plots can be exported for further analysis and

processing. Finally, custom, user-written modules can be added to the graphical interface

to perform arbitrary computations on subsets of the data generated by the BAS. This tool

allows users to add modules of their own which perform analyses specific to their use cases.

An example of the graphical interface is provided in Figure 2.10.

The behavioral analysis suite is freely available on GitHub2.

2.7 Thoughts on task design

The tasks described in this chapter demonstrate that mice can perform complex decision

tasks requiring the extensive use of working memory. However, it also highlights the

difficulty of designing, training, and interpreting such tasks. For example, during the

delayed-match-to-sample task, which is designed to identify neural signals of abstract

decision-making that are independent of motor actions, some mice systematically shifted

their view angle during the delay period in response to the cue (Figure 2.5g). It is

therefore difficult to determine whether the mouse is actually remembering the cue, or

merely using its view angle as a form of ‘memory’. This example highlights the difficulty

of interpreting the strategy taken by animals to perform tasks. Care must be taken to

ensure that the task design does not encourage alternative strategies which are close to as

effective as the desired task strategy.
2https://github.com/arimorcos/BehaviorAnalysisSuite
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One way to reduce the potential for alternate behavioral strategies is to increase behavioral

control. This will also reduce external sources of behavioral variance. For example, new

tasks should endeavor to reduce variance in view angle across trial conditions. This could

be accomplished in two ways. The view angle could be restricted during portions or the

entirety of a trial, enabling perfect control. Alternatively, mice could be encouraged to run

with repeatable patterns either by including incentives for running straight, such as extra

rewards for trials completed quickly, or by punishment for deviations, such as the addition

of friction to the environment, substantially slowing the pace of mice with extreme view

angles. However, even with more tightly controlled tasks, we can never eliminate all

sources of behavioral variance, so measured caution must always be taken in the

interpretation of neural signals.

We should also seek to engineer systems allowing for the rapid prototyping of task designs.

This is a critical advantage of the VR system described above. Many task designs that

may at first seem unlikely to be successful can prove to be highly effective. For example,

in training the delayed-match-to-sample task, the ’paired’ strategy was essential to induce

mice to pay attention to the cue configuration (see Section 2.4.2). This design seemed

likely to induce mice to simply repeat choices which led to a reward. However, only a

small fraction of mice ever learned this strategy. This example illustrates both the difficulty

of predicting how animals will react to certain task designs and highlights the utility of rapid

prototyping. If the cost of attempting such a strategy had been high, we likely never would

have attempted it.
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Because tasks can vary dramatically in the amount of effort required for their development

and training, we should also seek to use the simplest task possible for a given scientific

question. For example, the delayed-match-to-sample evidence accumulation task proved

incredibly difficult to train reliably, while the fixed association evidence accumulation

task, in comparison, was trivial to train and develop. However, almost all of the scientific

questions answerable by the former task could also be answered by the latter task, with the

notable exception of questions seeking to dissociate sensory responses from motor

responses. The benefits of a simpler task for the majority of scientific questions may

therefore outweigh the cost of reduced interpretability.
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Chapter 3

History-dependent variability in population dynamics

during evidence accumulation in cortex

Ari S. Morcos and Christopher D. Harvey

This and the following chapters are a modified version of a submitted manuscript.

3.1 Introduction

The activity patterns in a cortical microcircuit are determined both by the characteristics

of the external inputs it receives and the dynamic, ongoing changes in its internal activity

state. The computation to combine ongoing activity with new inputs is essential for many

complex behaviors, including evidence accumulation during decision-making. Much work

has focused on identifying the neuronal algorithms and mechanisms by which evidence

accumulation occurs, with considerable emphasis on the posterior parietal cortex (PPC)

(Shadlen & Newsome, 1996; Gold & Shadlen, 2000; Yang & Shadlen, 2007; Hanks et al.,

2015; Britten & Shadlen, 1992). Previous work has modeled evidence accumulation as

a competition between distinct pools of neurons with recurrent excitation within a pool
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and mutual inhibition across pools (Wong & Wang, 2006; Wang, 2002). The activity of

individual neurons in these models is long-lasting within a trial and homogeneous across

neurons. These models propose a ‘winner-take-all’ competition between these neuronal

groups in which activity eventually converges to one of several attractor states (Wong &

Wang, 2006;Machens, 2005;Wang, 2002). Although such models are consistent with some

experimental results (Shadlen & Newsome, 1996; Gold & Shadlen, 2000; Yang & Shadlen,

2007; Hanks et al., 2015; Britten & Shadlen, 1992; Horwitz & Newsome, 1999), our recent

work in the mouse PPC during a navigation-based decision task found that neurons had

transient, time-varying activity that was heterogeneous across neurons (Harvey et al., 2012).

These results led us to conceptualize the activity in the PPC on single trials as a trajectory of

time-varying neuronal population activity patterns. The apparent inconsistencies between

our previous results and traditional models revealed to us the lack of competing algorithmic

models for evidence accumulation.

Here, we used the conceptual framework of time-varying neuronal population activity

trajectories to study neuronal population dynamics on single trials during evidence

accumulation. Previous work has emphasized independent recordings from selected

subsets of individual neurons, summarized as averages across trials and cells, in part

because of technical challenges in measuring and interpreting neuronal population activity

on single trials. We therefore developed new experimental and computational methods

based on unbiased sampling of activity from large populations of neurons to reveal

structure in the moment-to-moment changes in population activity.
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We found that the PPC had long timescale dynamics in the form of structured transitions

between transient and largely uncorrelated patterns of population activity. New inputs to

the network, including evidence cues and behavioral choices, constrained the possible

population activity patterns for seconds into the future. This effect occurred by changing

the transition probabilities between activity patterns consisting of largely different

combinations of active neurons. The population-level representation of new inputs thus

depended both on the identity of the input and the near-past activity patterns in the

population, such that PPC activity never reset but rather functioned as a continuous record

of recent events. In addition, multiple task-relevant features were represented

simultaneously, distributed across populations of heterogeneous and variable neurons,

such that single task features (e.g., choice) did not converge to single activity patterns but

rather were represented across trials by many different activity patterns. These results are

inconsistent with evidence accumulation models that require a direct competition between

two or more groups of neurons (Wong & Wang, 2006; Machens, 2005; Wang, 2002), and

instead reveal novel features of PPC dynamics that motivate a new algorithmic model

based on general purpose, history-dependent dynamics.

3.2 Results

We used the fixed association evidence accumulation task described in Section 2.3. Briefly,

as mice ran down a virtual T-maze, they were presented with six visual cues that could each

appear on the left or the right wall at fixed locations (Figures 2.2a-b, 2.3). To receive a
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Figure 3.1 | Example imaging field of view and activity traces. a, Example histology image of GCaMP6m-
expressing neurons in the PPC. b, Example two-photon image of GCaMP6m-expressing neurons in layer 2/3 of
the PPC. c, Example ΔF/F traces (black) and deconvolved estimated spike counts (green) (Methods 5.2.4).

Session ID # cells 6-0 accuracy /
# trials

5-1 accuracy /
# trials

4-2 accuracy /
# trials

3-3 accuracy /
# trials GCaMP Variant

131_140911 194 100% / 107 91.1% / 90 82.4% / 34 N/A / 0 f

131_140916 188 94.7% / 94 85.7% / 105 81.8% / 33 N/A / 0 f

136_140820 270 93.1% / 87 89.8% / 79 66.0% / 47 N/A / 0 f

142_141212 434 90.0% / 181 85.0% / 181 76.9% / 52 N/A / 0 m

142_141218 381 89.6% / 135 81.7% / 120 67.5% / 40 N/A / 0 m

142_150103 215 90.7% / 86 83% / 94 74.3% / 105 60.5% / 38 m

144_141203 648 87.8% / 106 79.5% / 146 73.8% / 42 N/A / 0 m

144_141204 585 88.6% / 140 82.6% / 155 66.7% / 72 N/A / 0 m

144_141228 330 80.9% / 173 77.9% / 163 77.6% / 49 N/A / 0 m

150_141128 323 100% / 114 88.3% / 102 73.1% / 108 41.7% / 12 f

150_141207 313 98.1% / 107 82.2% / 107 78.4% / 116 57.1% / 49 f

Figure 3.2 | Summary of datasets analyzed.
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reward, the mouse had to turn at the T-intersection toward the direction that had more cues.

Mice performed the task with high accuracy by accumulating multiple pieces of evidence,

with a bias towards early cues (Figures 2.2c, 2.4).

3.2.1 Single neuron responses during evidence accumulation

We began our analysis of neuronal population activity during this task by examining the

distribution of activity patterns in individual neurons. We used calcium imaging to

measure the activity of 350 neurons simultaneously in layer 2/3 of the PPC and extracted

estimated spike counts using deconvolution of the fluorescence traces (Vogelstein et al.,

2010) (Methods 5.2; Figures 3.1, 3.2). Consistent with our previous work, most neurons

were transiently active for less than 10% of the trial on average, and different neurons

were active at different points in the trial, such that across the population, activity tiled the

full trial duration (Harvey et al., 2012) (Figures 3.3a, 3.4, 3.5a-b). To test for differences

in activity between trials with different choices and net evidence, we calculated a

selectivity index for choice and used a support vector regression (SVR) model to predict

net evidence from a single cell’s activity (Methods 5.3.2, 5.4.3). A fraction of neurons had

a statistically significant choice selectivity index, and some neurons had a significant

relationship between the actual net evidence and the net evidence predicted from their

activity (choice 20.2%, net evidence 22.7%; 5% expected by chance; Figure 3.3c-d).

When we plotted the mean activity patterns for the neurons with choice selectivity, we

identified choice-specific sequences of activity, consistent with PPC activity patterns

during less complex decision tasks (Harvey et al., 2012) (Figure 3.4c-d). However, the
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majority of neurons did not have significantly different activity between trials of different

choices and net evidence, consistent with our previous results (Harvey et al., 2012). The

distribution of choice selectivity indices and net evidence prediction accuracies for single

neurons largely overlapped with the distribution from shuffled data (Figure 3.3c-d). The

low selectivity values in these neurons resulted from unreliable responses with varying

activity times between trials of the same type and similar activity between trials of

different types.

3.2.2 Task-relevant information is distributed across neuronal populations

Although the majority of individual neurons lacked strong selectivity, the population

activity (concatenated activity of all individual neurons) contained information about the

choice and net evidence on single trials with high accuracy. We quantified this selectivity

using a support vector machine (SVM) classifier for choice and a SVR model to compare

actual net evidence with the net evidence predicted by the population activity (Figure

3.3e-f).
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Figure 3.3 (following page) | Distributed representation of task-relevant information across PPC neurons.
a, Normalized mean activity across all trials for all neurons pooled across all datasets (n = 3840 cells from 5
mice). Traces were normalized to the peak of each cell’s activity, averaged, and sorted by the peak’s maze
position. b, Single trial activity on left 6-0 and right 0-6 trials for three example neurons. Top panels: each row
is an individual trial. Bottom panels: mean ± s.e.m. For each net evidence condition (e.g., 2L), the mean spike
count was calculated by combining the activity at all cue epochs matching the given net evidence. c, Histogram
of the the choice selectivity index for individual neurons (black) and with shuffled trial labels (gray). Choice
selectivity was calculated separately for each spatial bin, and the maximum magnitude across bins was taken
for each neuron. Choice selectivity for each neuron was calculated based on activity in left 6-0 and right 0-6
trials (Methods 5.3.2). d, Histogram of SVR model performance using all trial types, quantified as the correlation
between the actual net evidence and the net evidence predicted by the SVR model, for individual neurons
(black) and with shuffled net evidence labels (gray). e, Classification accuracy (mean ± s.e.m., n = 11 datasets)
for choice using an SVM based on population activity during 6-0 (black), 5-1 (green) and 4-2 (purple) trials.
Independent classifiers were trained and tested at each maze position. f, Actual net evidence vs. net evidence
predicted by a SVR classifier trained on population activity across all cue epochs and trial types. Error bars
represent mean ± s.e.m. across datasets (n = 11). g-h, Peak classifier accuracy for choice (g) and the predicted
vs. actual net evidence correlation coefficient (h) for classifiers constructed with increasing numbers of neurons,
added from least to most selective (based on histograms from panels (c) and (d)). Classifier performance
increased as neurons individually containing little task-relevant information were included, suggesting that
information was distributed across neurons. Shaded error bars represent mean ± s.e.m. across datasets, and
max individual neuron classification accuracies/correlations were the mean across datasets.
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Figure 3.3 | (Continued)
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Figure 3.4 | Mean population activity patterns in PPC for all cells and selective cells. a, Normalized mean
activity across correct left 6-0 (left) and correct right 0-6 (right) trials for all neurons pooled across all datasets (n =
3840 cells from 5 mice). Traces were normalized to the peak of each cell’s activity on either correct left 6-0 (top)
or correct right 0-6 (bottom) trials, averaged, and sorted by the peak’s maze position. b, Same as in a, except for
on preferred (top) or non-preferred (bottom) correct 6-0 trials. Cells were sorted accorded to each cell’s activity
in its preferred condition. Preferred trial type was determined for each cell individually based on the sign of its
choice selectivity index. c-d, Same as a-b, but only for selective cells. Selective cells were defined as all cells
whose peak choice selectivity index magnitude exceeded 0.25.
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We performed multiple analyses to test the possibility that our results were due to

contributions from behavioral parameters such as changes in the visual scene or running

patterns, rather than evidence accumulation. In all cases, we found that behavioral

variability could not entirely explain the neuronal activity patterns we observed. Our

analyses included the mouse’s position and view angle in the maze, which together

defined the visual scene, and also included the spherical treadmill’s rotational velocity,

which was determined by the mouse’s running pattern. Together, these parameters defined

a large part of the mouse’s visual and motor experience, including the parameters that

were most likely to be correlated with specific task events.

One possibility is that the mouse began to turn left or right as it saw evidence cues such

that accumulation of evidence was performed through the mouse’s viewing angle in the

maze (e.g., left of center viewing for more accumulated left cues) rather than through an

internal representation of net evidence. In such a case, net evidence could be correlated

with different heading directions (view angle in the maze), motor signals (turning on the

treadmill), and direct visual input (combination of view angle and position in the maze).

Our SVR analysis to predict net evidence (Figure 3.3d, f, h) included all trials, for which

differences in view angle across net evidences were present (Figure 2.4g). However, when

we limited our analysis to only trials with similar view angles (± 2.5°), the SVR analysis

based on population activity predicted above chance levels the actual net evidence (Figure

3.5e-f). Additionally, when we trained SVR models on behavioral parameters alone (view

angle, maze position, two axes of treadmill rotational velocity in a single model) or on
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behavioral parameters in addition to neuronal population activity, models trained on both

behavioral parameters and neuronal population activity consistently predicted the net

evidence better than those trained on behavioral parameters alone, despite modest

predictability from behavioral parameters alone (comparison of models with different

numbers of parameters was made possible by the use of non-overlapping training and

testing sets; Figure 3.5g-h). These results suggest that a representation of net evidence

was present independent of heading direction, running patterns, and direct visual input.

The choice and net evidence information might have come solely from a small fraction of

neurons with high selectivity; these are the neurons that we and others have emphasized

previously. Alternatively, information could have been distributed across a large group of

neurons extending beyond the classically selective neurons. To distinguish these

possibilities, we applied the population activity classifiers for choice and net evidence to

increasingly larger subsets of neurons, beginning with neurons with the lowest individual

classification accuracy. The accuracy of both classifiers increased with the incorporation

of neurons that individually represented choice and net evidence poorly (Figure 3.3g-h).

Using the 40% least selective neurons, we were able to predict the mouse’s choice with

75% accuracy, even though none of these neurons had a statistically significant choice

selectivity index (Figure 3.3g). The improvement with the addition of more neurons could

have resulted from the additive effect of weak information in each neuron or the revelation

of correlated activity patterns with the addition of larger numbers of neurons or both; we

plan to investigate these possibilities in future work. Together, these results suggest a
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Figure 3.5 | Analyses of single neuron- and population-level representations of task-relevant features.
a-b, Histogram of the fraction of the entire trial (a) and cue period (cues 1-6) (b) neurons were active (n = 3840
neurons from 5 mice). c, SVM classification accuracy (mean ± s.e.m., n = 11 datasets) for choice based on
population activity on correct and error trials. Independent classifiers were trained and tested at each maze
position. d, Same as Figure 3.15a except for a mouse with equal cue weightings. Cumulative distribution of
the pairwise trial-trial population activity correlation coefficients for epochs with the same (black) or different
(green) previous cues, keeping net evidence and epoch constant (e.g., LRLXXX vs. RLLXXX trials at cue 3)
(p < 1.4 x 10-4, two-sample KS test, n = 2 datasets; mouse colored as red in Figures 2.2, 2.4b, d). This analysis
tested if neuronal activity at a given epoch contained information about the previous epoch’s cue, independent of
maze epoch and net evidence. e-f, SVR classifiers for net evidence performed on trials with nearly identical (±
2.5°) view angles on left choice (e) and right choice (f) trials. Across mice the predicted vs. actual net evidence
correlation coefficient was significantly higher for the model with behavioral parameters and neuronal activity
than for the model with behavioral parameters only (p < 0.001 relative to shuffled net evidence labels). Net
evidence therefore appeared decodable beyond information provided by view angle. g, Actual net evidence vs.
net evidence predicted by an SVR classifier trained on behavioral parameters only (gray) or both behavioral
parameters and neuronal population activity (black) (Methods 5.4.3). Error bars represent mean ± s.e.m.
across datasets (n = 11). h, Data from (g) shown for individual datasets. Green crosses represent means across
datasets (n = 11).
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population representation in which information is distributed across heterogeneous and

variable neurons, as has been suggested previously in studies of coding in individual

neurons (Meister et al., 2013; Park et al., 2014; Jun et al., 2010; Raposo et al., 2014; Mante

et al., 2013; Rigotti et al., 2013; Maimon & Assad, 2009; Churchland et al., 2010). For all

subsequent analyses, we therefore considered all the neurons we imaged, in contrast to

many previous studies that have selected, either at the measurement or analysis stage, only

those neurons that were individually selective for a specific task feature, such as choice.

3.2.3 Clustering neuronal activity patterns across trials

Given that neuronal activity was in large part heterogeneous across neurons and variable

between trials and that task-relevant information was distributed across neurons, we

reasoned that further analyses of individual neuron activities might not achieve our goal of

understanding features of the population activity on single trials. We therefore focused our

subsequent analyses exclusively on the population level by developing methods to

measure how the population activity pattern changed from moment to moment. We

defined the population activity pattern at a given time period as the vector of each

neuron’s estimated spike count in that period. We conceptualized the population activity

as a trajectory involving transitions from one activity pattern to another. To facilitate the

analysis and visualization of transitions between patterns over time, we reduced the

dimensionality of the population activity using a clustering algorithm. Activity patterns

were clustered based on similarity in the n-dimensional activity space defined by the n

simultaneously imaged neurons (Methods 5.6). We considered each cluster to represent an
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activity pattern in the PPC population. The number of clusters was determined using the

affinity propagation clustering algorithm (Frey & Dueck, 2007). Our results were

consistent across a wide range of cluster numbers and affinity propagation settings (Figure

3.7k; Methods 5.6.2). Clustering was performed independently for ten epochs, each of

which corresponded to a different time period of the trial. For each epoch, the estimated

spike count on each of m trials for each of n simultaneously imaged neurons was

calculated, resulting in m points in an n-dimensional space. We clustered these m points

such that each cluster corresponded to a different set of trials with similar population

activity patterns at a given epoch (11 ± 8.4 trials/cluster on average; Figure 3.7e). Each

trial was part of a single cluster at each epoch. For visualization, each cluster was

represented as a circular node with area proportional to the number of trials in the cluster

(Figure 3.6e). Transitions between clusters in consecutive epochs were marked as lines

with thickness proportional to the transition probability (Methods 5.6.3). Single trials

could therefore be described as an activity trajectory defined by the sequence of clusters

visited from epoch to epoch. These cluster-space trajectories are conceptually identical to

trajectories that have previously been described using principal component analysis and

other methods; the only difference is in the dimensionality reduction algorithm used

(Harvey et al., 2012; Churchland et al., 2012; Mante et al., 2013; Mazor & Laurent, 2005;

Briggman, 2005; Raposo et al., 2014).
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Figure 3.6 (following page) | Clustering neuronal activity across trials to reveals trial-to-trial variability.
a-c, Example trial-trial population activity correlation matrices at the trial start epoch (a), cue 4 epoch (b), and
the turn epoch (c) sorted by cluster identity. Red squares indicated cluster membership such that pairs of trials
within the same red square were in the same cluster. d, Example trial-trial population activity correlation matrix
for two consecutive epochs (trial start epoch compared to cue 1 epoch). Trials were sorted according to the
cluster identity during the trial start epoch. Because trials were sorted identically in both epochs, trial pairs along
the diagonal would be expected to have high correlations if trial activity was similar in consecutive epochs. In
contrast, the low correlations along the diagonal suggest that trials had highly different population activity in
consecutive epochs. e, Schematic demonstrating clustering procedure (Methods 5.6). At each of ten spatially-
defined maze epochs, clustering was used to group together individual trials with similar population activity
patterns. Clusters at each maze epoch were represented as a column of nodes with area proportional to the
number of trials in each cluster. Nodes were colored based on the fraction of trials within each cluster resulting
in a left choice. Nodes were sorted vertically from largest to smallest left choice probability. Transition matrices
were constructed by calculating the empirical transition probability between adjacent clusters. f, An example
transition matrix constructed from all trials in a single dataset. Edge widths between nodes represent the forward
transition probability. Nodes were colored and sorted as described in (e). g-h, Transition probabilities for left
6-0 (g) and right 0-6 (h) trials using the same clusters derived from all trials as in f. Despite identical cues and
choices, the paths through the transition matrix of each group were highly variable. i, Fraction of clusters visited
by left 6-0 (red) and right 0-6 (blue) trials at each epoch decreased to only 0.5, suggesting that much variability
remained among these trials, even at the turn. j, Distribution of pairwise trial-trial population activity pattern
correlations for pairs of trials with identical cues and choices at the turn epoch for all 6-0 trials (black) and only
trial pairs in the same cluster (gray). k, Mean overlap fraction of active neurons within the same cluster (intra-
cluster) and across clusters (inter-cluster). The overlap fraction was defined as: (number of neurons active in
both clusters / number of neurons active in either cluster). Small inter-cluster overlap suggested that a largely
distinct group of neurons was active in each cluster. Overlap fractions were calculated separately for correct left
6-0 and right 0-6 trials. Shuffled overlap index was calculated by shuffling the assignment of trials to clusters.
Cells with activity exceeding a z-score threshold of 1.5 were considered ‘active’. ***P < 0.001, two-sample
Student’s t-test. Error bars represent mean ± s.e.m. across datasets. l, Fraction of clusters visited at a given
epoch when clustering was performed on all epochs together (Methods 5.6.4). All trial types were included.
Individual lines represent datasets (n = 11). The fraction of clusters visited was similar at all epochs, even at
the turn epoch. m, z-scored activity of cells in two clusters during correct left 6-0 trials at the cue 1 epoch (black
and green) and one cluster at the cue 2 epoch (purple). Cells were sorted according to their activity in the black
cluster, such that the cell numbers were the same for each displayed cluster.
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Figure 3.6 | (Continued)
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Before exploring population dynamics in the cluster space, we first sought to gain an

intuition of how neuronal activity patterns related to the clusters. We visualized the

relationship between neuronal activity and clusters by calculating for each pair of trials the

correlation between their population activity patterns at a given epoch. We sorted the

matrix of trial-trial correlation coefficients by the trials that were clustered together

(Figure 3.6a-c). This visualization revealed that clustering identified structure in the

trial-trial activity pattern correlations and showed that clusters varied over a wide

distribution in how similar they were to one another. As expected by the transient activity

we observed in individual neurons (Figures 3.3a, 3.4, 3.5a-b), the activity patterns in

clusters at one epoch were largely different from the activity patterns observed in clusters

at the subsequent epoch (Figures 3.6d, 3.9f). Consistently, when we clustered activity

patterns from all epochs together, rather than for single epochs individually, such that the

clusters were the same from epoch to epoch, we found that the likelihood of a trial staying

in the same cluster across consecutive epochs was rare (0.9 ± 0.01% of transitions; Figure

3.7f; Methods 5.6.4). The activity patterns in each cluster were made up of complex

combinations of activity levels in the population of individual neurons. Some individual

neurons thus had elevated activity in multiple clusters (Figures 3.6m, 3.7i-j, 3.8). A

cluster should therefore be considered as a pattern of activity across neurons in the

population, such that the patterns between clusters are discriminable from one another.

Future work will aim to identify the structure of these activity patterns within clusters, but,

importantly, for the focus of this work, clusters were primarily considered an abstracted
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grouping of similar activity patterns, and the precise activity patterns that defined each

cluster were not important for the subsequent analyses and results.

Activity patterns reflecting important task-relevant features, including choice and net

evidence, were apparent in the cluster space, even though clustering was performed on

neuronal activity alone without any information about behavioral parameters (Figure

3.7a-d). For choice, for example, different paths through clusters emerged for left- and

right-choice trials, which is a visualization of the choice-specific activity trajectories we

observed previously (Harvey et al., 2012) (Figure 3.6f-h).

We used the cluster space to visualize the population activity trajectories on single trials.

This visualization revealed a high amount of trial-trial variability. Trials with the same

choice, even during the turn epoch, occupied a diverse set of clusters and traversed

different paths through cluster space, suggesting they had distinguishable activity patterns

and trajectories. This variability could have been caused by differences in the sequences

of cues presented on different trials. We therefore focused on trials with identical evidence

cues and choices (e.g., correct 6-0 left trials), which were randomly interleaved with other

evidence accumulation trials during imaging (5-1, 4-2, and 3-3 trials). Trials of the same

type might be expected to have highly correlated activity patterns and thus converge to

similar paths through a small set of clusters. In contrast, the population of trials with

identical evidence cues and choices occupied more than half of all possible clusters at

each epoch, even at the turn after a choice was made (Figure 3.6g-i).
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Figure 3.7 (following page) | Characterization of behavioral and neuronal patterns across clusters.
a, Fraction of trials in each cluster in the turn epoch that were left choice trials for an example dataset.
Clustering revealed neuronal activity patterns related to behavioral choices. Gray area indicates the median
and 99% confidence intervals of the shuffled distribution of trial assignments to clusters. b, Comparison of
the total difference from a uniform distribution for the real data (circles) to the 99% confidence intervals of the
corresponding shuffle for each dataset (lines). The total difference was calculated as the summed absolute
difference from the shuffle median across clusters. c-d, Same as in a-b, but for net evidence during the fifth cue.
e, Distribution of trials per cluster across all epochs and datasets (n = 2457 clusters). f, Cluster self-transition
probabilities for clustering performed using all epochs together. Transition probabilities were considered from
one epoch to the next epoch. Low self-transition probabilities suggested that activity patterns changed over the
time of consecutive epochs. Error bars represent mean ± s.e.m across datasets. g, Based on the cluster identity
for a trial at a given epoch, the accuracy of predicting the clusters that trial occupied in the past and future. Real
data are shown in black and a simulated pseudo-population is shown in green. To create the pseudo-population,
trial identities were shuffled independently for each neuron to break neuron-neuron correlation structure but
to preserve each neuron’s activity within the trial (Methods 5.7.2). Error bars represent mean ± s.e.m. across
datasets. h, Cumulative distribution of the number of neurons active in each cluster for different z-score activity
thresholds. i, Cumulative distribution of the number of maze epochs in which a neuron was active in at least
one cluster for different z-score activity thresholds. j, Cumulative distribution of the number of clusters in which
a neuron was active within a single epoch for different z-score activity thresholds. k, For a given trial based on
the current cluster identity, the accuracy of predicting the clusters occupied by that trial in the past and future
epochs did not depend greatly on the clustering preference parameters (percentile of the distance matrix used for
clustering; 1st, 10th, 30th, 50th, 70th from left to right) and, hence, numbers of clusters. Cluster numbers are the
mean number of clusters for each preference parameter across datasets. Error bars represent mean ± s.e.m.
across datasets.
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Figure 3.7 | (Continued)
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This initial visualization of single trials in cluster space revealed that different trajectories

emerged for different trial types (e.g., left vs. right choice) and that within each trial type

extensive variability was present, consistent with previous studies of variability in the

activity of cortical neurons (Britten & Shadlen, 1992; Renart & Machens, 2014; Marcos

et al., 2013; Churchland et al., 2010, 2011; Maimon & Assad, 2009).

Although the variability in the clusters occupied revealed that trials had distinguishable

activity patterns at a given epoch, we wanted to gain more insight into the neuronal basis

of this variability. For example, trial-trial variability could have resulted from

modulations of the tonic firing of all neurons or from major changes in which sets of

neurons were active in each trial. As a first examination of the variability, for each pair of

clusters in a given epoch, we calculated the fraction of neurons that were active in both

clusters (active neurons were defined by a threshold in z-scored estimated spike counts:

threshold = 1.5). Surprisingly, only 10% of neurons on average were active in both

clusters, even when limiting our analysis to trials with identical choices and evidence

cues. Many trials of the same type therefore had largely non-overlapping populations of

active neurons (Figures 3.6k, 3.8). Consistently, the correlation coefficient between the

population activity patterns for pairs of trials of the same type at the same epoch (e.g., 6-0

left trials at the turn period) had a wide distribution. Some trial pairs had highly correlated

activity, and others had correlation coefficients near zero (Figure 3.6a-c, j). In addition,

we quantified the variability as a function of time in the trial using the cluster space

defined by clustering activity patterns from all epochs together, rather than clustering
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independently within each epoch (Methods 5.6.4). The variability was estimated at a

given epoch as the fraction of clusters explored by a population of trials. Surprisingly,

when considering all trial types together, the fraction of clusters visited did not decrease

over the course of the trial (Figure 3.6l). The activity therefore maintained a high number

of distinguishable activity patterns throughout the trial and did not collapse to a

low-variability representation even at the turn epoch after a choice had been made.

Together, these results suggest that individual trials with the same cues and choices varied

greatly to the extent of having largely non-overlapping sets of active neurons.

3.2.4 Temporally structured trial-trial variability

Given that a stereotyped sequence of activity patternswas not present for trials with identical

cues and choices, we sought to understand the cause of the trial-trial variations. We therefore

focused only on trials of a single type in order to remove the variability due to differences

in trial events (e.g., different evidence cues and choices). Using only trials of a single type

(e.g., left 6-0 or right 0-6 trials), we generated a new cluster space to examine the within trial

type variability (Figure 3.9a). The variability in activity trajectories in this case could be due

predominantly to biological or measurement noise. If so, the transitions from one activity

pattern to the next are expected to be unpredictable, such that each single trial wanders

through a random sequence of activity patterns. Alternatively, the variability between trials

of the same type could carry information. In this case, each trial is expected to traverse

an orderly set of activity patterns, such that the transition from one activity pattern to the

next is predictable. To examine these possibilities, we tested if we could predict the future
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Figure 3.8 | Visualizations of neuronal activity across clusters. a-e, Mean z-scored spike count for individual
neurons across clusters comprised only of correct left 6-0 trials at two adjacent epochs (Cues 4 and 5) from a
single dataset. These plots demonstrate that the activity across clusters and epochs featured largely different
patterns of active neurons. Neurons were either unsorted (a) or sorted according to their activity in clusters
1, 3, 7, or 9 (b-e). Neurons whose mean z-scored activity was less than 0.001 in all of the displayed clusters
were excluded for display purposes (these neurons were active during a different trial epoch). Clusters were
generated from correct left 6-0 trials. f-h, Left panels: Matrix of population activity correlations between each
pair of cluster centers sorted according to the cluster’s left choice probability at three different maze epochs. For
each cluster, the population activity was calculated as the mean activity vector across trials for each cluster. Right
panels: Population activity correlation between each pair of clusters as a function of their difference in left choice
probability. i-k, Same as in f-h, but for net evidence.
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activity patterns of a trial based on the trial’s current activity pattern. As a first test, we

visualized the paths of trials starting from a single cluster and found that only a subset

of subsequent clusters was visited by those trials, even at many epochs later in the trial

(Figure 3.9b). This example suggests that by knowing the trial’s starting point, we could

predict, to some extent, the clusters visited by that trial in the future, which is consistent

with structure in the activity pattern transitions across time. To visualize if this structure

could occur by chance, we simulated a ‘noise’ case by shuffling the assignment of trials to

clusters at each epoch (maintaining the distribution of trials across clusters), thus creating

transitions between clusters that mimic noise-driven transitions. In the shuffled (‘noise’)

case, the trials starting in a single cluster visited all subsequent clusters, in contrast to what

we observed in the real data (Figure 3.9c).

This example suggested that the transitions between activity patterns could be

non-random and that temporal structure might exist in the variable paths traversed by

single trials of the same type. We quantified this structure by developing a classifier in

cluster space that asked if, based on the identity of the cluster occupied by a given trial at

the current epoch, we could predict the identities of the clusters occupied by that same

trial in past and future epochs. This analysis therefore tests if the current activity pattern

contained information about past and future activity patterns within a single trial. For

trials with identical choices and evidence cues, the classifier predicted significantly above

chance which cluster a trial occupied ∼5-6 epochs (∼4-5 seconds) into the past and

future, and in some cases across the entire trial (Figure 3.9d-e). Similar predictability was
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Figure 3.9 | Long timescale temporal structure in PPC activity. a, Example transition matrix constructed only
from left 6-0 (both correct and error) trials in a single dataset. The nodes at the trial start had high left choice
probabilities, even before evidence cues were presented, because the only trials included in this analysis were
left 6-0 trials, which almost always resulted in a left choice. b-c, Transition probabilities of all trials starting
from a single cluster for real (b) and shuffled (c) data. In shuffled data, the assignment of trials to clusters was
randomized, maintaining the distribution of trials across clusters. d, Based on the cluster identity for a trial at a
given epoch, the accuracy of correctly predicting that trial’s past and future cluster occupancies (Methods 5.7.1).
Predictability across many epochs suggests long timescale temporal structure in single trial activity trajectories.
Accuracies were pooled across left 6-0 and right 0-6 trials that were clustered and considered separately. Error
bars represent the median and 99% confidence intervals from data in which the assignment of trials to clusters
was shuffled. e, Same as in d, but averaged across all datasets (n = 11). To combine across datasets with
different chance classifier performance, accuracies were converted into the number of standard deviations
above the shuffled distribution. Error bars represent mean ± s.e.m. across datasets. f, Relationship between
the population activity correlation of clusters in adjacent epochs and the transition probability between them.
Transitions were not more likely between clusters with more similar population activity patterns (r = 0.02, p >
0.05). g, Distribution of behavioral error probabilities (i.e. error trials in a cluster divided by total trials in a cluster)
across clusters at the trial start for a single dataset. Error bars represent 99% confidence intervals of data in
which the assignment of trials to clusters was shuffled. Because many of the clusters contain substantially more
or fewer error trials than the shuffled distribution, this distribution is significantly different than chance (p < 0.01).
For example, trials beginning in cluster 8 result in an error trial close to 80% of the time. Similar results were
observed in other datasets.
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Figure 3.10 | Influence of the current population activity pattern on future population activity patterns and
the change in population activity in n-dimensional activity space. a, Schematic illustrating the distances
between two trials before (dpre) and after (dpost) a cue was presented. b, Pairwise correlation coefficients between
the starting and ending distances across trials with identical cues presented and for different numbers of cues
(Δcues) between the start and end points. At all Δcues, correlation coefficients were significantly different from
a shuffled distribution (Methods 5.5.2; p < 0.001), showing that the distance between trials before an identical
sequence of cues is presented is predictive of their distance after the cues are presented. Error bars represent
mean ± s.e.m. across datasets. c, Schematic illustrating the starting (dpre) distance between two trials and the
distance between each trial’s vector resulting from cue presentation (dvector). d, Pairwise correlation coefficients
between the starting distance and vector distance across trials with identical cues presented. Correlation
increased with Δcues. At all Δcues, correlation coefficients were significantly different from a shuffled distribution
(Methods 5.5.3; p < 0.001), suggesting that the vector defining the change in population activity in response to
a cue depends on both the cue and the starting population activity pattern. Error bars represent mean ± s.e.m.
across datasets.

observed in the n-dimensional activity space (Figure 3.10a-b; Methods 5.5.2). In addition,

the vector describing the change in population activity in response to a new cue was also

dependent on the current activity pattern, which suggests that dynamics in the population

activity affected how inputs influenced ongoing network activity (Figure 3.10c-d;

Methods 5.5.3). We performed extensive tests to ensure that the temporal structure was

not imposed by the clustering process (Methods 5.7.2).

It is also possible that trial-trial differences in behavioral parameters could have generated

the structured trial-trial variability in neuronal activity and the presence of history signals

across long timescales. We ruled out these possibilities using a series of tests to see if

neuronal activity explained additional variability beyond what could be explained by the

behavioral variability, by building both neuronal activity and behavioral features into a
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single logistic regression model (Methods 5.7.3. We found that the current behavioral

parameters (view angle, maze position, treadmill rotational velocity, which together

define the visual scene and running patterns) alone explained above chance, but poorly,

past and future activity pattern clusters for only 1 epoch into the past or future (Figure

3.11). In contrast, models using the current behavioral parameters and the current activity

pattern cluster (or the current activity pattern alone) predicted the past and future epochs

significantly better, including across a longer timescale of ∼5-6 epochs (determined by

adjusted R2 to compare models with different numbers of parameters; Figure 3.11).

Together, these results indicate that the current activity pattern contained information

about past activity patterns and influenced the transition probabilities to future activity

patterns, even when removing the effects of different trial events like evidence cues and

choice.

The long timescale temporal structure we observed could be caused by multiple factors.

First, this structure could arise from persistent activity patterns, in which single neurons

have long-lasting activity across epochs. Alternatively, there may exist predictable

progressions between time-varying activity patterns, such that the PPC has long timescale

dynamics via structured transitions from one short-lived population activity pattern to

another. Multiple features of the data provided strong support for the second alternative.

We found that neurons were transiently active with time-varying activity (Figures 3.3a,

3.4, 3.5a-b). Also, clusters from different epochs had mostly distinct activity patterns

(Figure 3.6d, 3.9f). Furthermore, transitions were just as likely between clusters with
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Figure 3.11 | Contribution of behavioral variability to temporally structured trial-trial variability. Our ability
to predict the past and future population activity pattern based on the current population activity pattern could not
be explained by behavioral variability. We performed a multivariate logistic regression to predict a trial’s cluster
identity at a given epoch based on only the behavioral parameters at another epoch (gray) or both the behavioral
parameters and the cluster identity at another epoch (black). To allow for a binary classifier, we only included
those trials whose cluster identity contained either the most or second most trials during the prediction epoch
(Methods 5.7.3). Consistently, the model based on both behavioral parameters and the neuronal population
cluster identity outperformed the model based on only behavioral parameters. This analysis was performed on
left 6-0 trials (b) and right 0-6 trials (c) separately, and the results were pooled together to generate the plot
for all 6-0 trials (a). The behavioral parameters used were x/y position, x/y treadmill velocity, and view angle as
described in Section 2.2. Separate models were fit for each combination of previous and future cluster identities
and combined based on the number of maze epochs between them (Δ maze epochs). Adjusted R2 values were
used to compare the predictive power of models with different numbers of explanatory variables. *P < 0.05, **P <
0.01, ***P < 0.001, two-sample Student’s t-test.

78



similar activity patterns as they were between clusters with dissimilar activity patterns

(Figure 3.9f). As an additional test of whether the long timescale structure could have

emerged from long-lasting activity in individual neurons, we shuffled the trial identities

separately for each neuron among trials of the same type. This shuffle broke

neuron-neuron correlation structure but preserved activity patterns in individual neurons

(simulating a pseudo-population). The removal of neuron-neuron correlations eliminated

our ability to predict the past and future clusters visited by a single trial based on the

current cluster occupied by that trial (Figure 3.7g). Together these results indicate that the

temporal structure in single trials did not arise from long-lasting activity in individual

cells; rather, structured moment-to-moment transitions occurred between transient

patterns of neuronal activity with largely different sets of active neurons.

Given that long timescale structure existed in PPC activity, we considered the possibility

that activity patterns may be predictive of behavioral outcomes long in advance. To test

this possibility, we asked if the population activity pattern, even before the first cue was

presented, was related to if the mouse made a correct or incorrect choice (Methods 5.7.4).

We found that even before the mouse had seen any evidence cues, a small set of clusters

contained significantly more error trials than would be expected by chance, suggesting that

the activity patterns associated with those clusters were predictive of incorrect choices later

in the trial (p < 0.001; Figure 3.9g). Also, using an SVM classifier, we could predict the

mouse’s choice on error trials, but not on correct trials, weakly above chance before any

cues were presented (p < 0.01 at the first bin a trial; Figure 3.5c).
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3.2.5 A memory of past events is maintained in PPC population activity over

seconds and across trials

Thus far, our results indicate that long timescale structure exists in the PPC over seconds,

not as sustained activity in individual neurons but rather as orderly transitions from one

activity pattern to another, often with large variations in which neurons were active. We

have shown, based on our ability to predict past and future activity patterns from the

current activity, that the activity pattern at a given moment contained information about

past activity patterns and also influenced the transition probabilities to future activity

patterns over seconds. These results make important predictions about the timescale over

which information about transient events is maintained in the PPC. An event during a trial

is expected to result in a new population activity pattern. This new activity pattern would

depend on both the features of the event and the activity pattern transition probabilities

immediately prior to the event. Because of the long temporal structure that we identified

in PPC dynamics, the activity pattern following the event is then expected to influence the

transition probabilities to future activity patterns. Because the event helped to generate

this new activity pattern, and because this activity pattern influences the transition

probabilities to future activity patterns, the event also has an effect on the transition

probabilities to future activity patterns. Therefore, by helping to create the activity pattern

in the population, a transient event is expected to have a long-lasting effect by

constraining the possible future activity patterns. We therefore hypothesized that transient

events have signatures of their occurrence long after they ended. In this case, the

80



Current trial’s maze position (cm)
0 100 200 300 400

C
la
ss
ifi
ca
tio
n 
ac
cu
ra
cy
 o
f

pr
ev
io
us
 tr
ia
l’s
 c
ho
ic
e 
(%
)

0

20

40

60

80

100
Cue: 1 2 3 4 5 6

Chance

a b c

Current trial’s maze position (cm)
0 100 200 300 400

C
la
ss
ifi
ca
tio
n 
ac
cu
ra
cy
 o
f

pr
ev
io
us
 tr
ia
l’s
 re
w
ar
d 
(%
)

80

85

90

95

100

Chance

1 2 3 4 5 6Cue:

Population activity
dimension 1

-6 -4 -2

P
op
ul
at
io
n 
ac
tiv
ity

di
m
en
si
on
 2

-6

-4

-2

0

2

4
Previous trial’s outcome

Correct, left
Correct, right
Incorrect, left
Incorrect, right

0 2 4 6

Figure 3.12 | Neuronal population activity in the current trial reflects the previous trial’s choice and
outcome. a, Population activity patterns on different trials at the trial start epoch colored by the choice and
outcome (reward or no reward) of the previous trial. Dimensionality was reduced using factor analysis for
visualization purposes. Each circle is one trial. b-c, Both the previous trial’s choice (b) and if the previous trial
was rewarded (c) could be classified based on the population activity. Independent SVM classifiers were trained
and tested at each maze position. Error bars represent mean ± s.e.m. across datasets (n = 11).

variability we observed between trials of the same type could have emerged as a

consequence of differences in recent past events.

To test this hypothesis, we asked if the variability in activity patterns at the beginning of a

trial could be explained by two prominent past events: the previous trial’s choice and the

previous trial’s reward outcome (correct or incorrect). Here, and in following analyses,

because we were not directly analyzing transitions between activity patterns, we

performed our analyses on the population activity without clustering for simplicity (note

that similar results were obtained with clustering). The population activity patterns at the

start of a trial, following an inter-trial interval of at least two seconds, were highly

different for trials that had different choices and reward outcomes in the previous trial

(Bernacchia et al., 2011; Donahue & Lee, 2015; Seo et al., 2007; Seo & Lee, 2007;

Marcos et al., 2013). We visualized this result with dimensionality reduction by factor
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analysis (Figures 3.12, 3.14) and quantified the result using an SVM classifier based on

population activity (Figure 3.12b-c). The previous trial’s choice could be decoded above

chance for as long as ten seconds after the conclusion of the previous trial, including well

into the current trial (Figure 3.12b). This signal did not have an easily detectable

behavioral effect because a linear model with interactions could not predict the mouse’s

choice on the current trial based on the previous trial’s choice and reward (R2: 0.02 ±

0.01, mean ± s.e.m., p > 0.05; Section 2.3.3) (Busse et al., 2011). Mice may have behaved

differently (e.g., had different running patterns) in the current trial depending on the

choice and reward outcome of the previous trial. In this case, our ability to classify the

outcome of the previous trial based on neuronal population activity may simply reflect the

representation of current motor variables. Consistently however, using behavioral

parameters for visual scene and running patterns, we were unable to classify above chance

levels history signals from the previous trial in the subsequent trial (Figure 3.13). PPC

activity therefore contained information about events from previous trials many seconds

after they had ended. As a result, trials with identical cues and choices had highly variable

activity patterns due to differences in past events (Figure 3.15d).

3.2.6 A novel model for evidence accumulation based on history-dependent

dynamics

Our analyses to this point have focused in large part on comparisons between trials of a

single type, but the features identified in these analyses have direct implications for

evidence accumulation. We have shown that activity patterns in the PPC partially define
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Figure 3.13 | Contribution of behavioral variability to classification of the previous trial’s outcome. a,
Comparison of a neuronal activity-based SVM (black), behavioral parameter-based SVM (green), and the 99%
confidence interval of a neuronal activity-based SVM with shuffled labels (gray) for the previous trial’s choice
for a single dataset. The behavioral parameter-based SVM could not discriminate the previous trial’s choice.
Classifiers were trained to distinguish the mouse’s choice on the previous trial independently at each bin in
the current trial. b, Difference between the classification accuracy of the neuronal activity-based SVM and the
behavioral parameter-based SVM for the previous trial’s choice. Error bars represent mean ± s.e.m. across
datasets. c-d, Same as in (a-b), but with classifiers for whether or not the previous trial was rewarded.
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the set of possible future activity patterns over seconds (Figure 3.9). Events that help to

establish a new activity pattern will therefore influence the transition probabilities to

future activity patterns, creating a short-term memory of the event, as we have shown for

choices and reward outcomes across trials (Figure 3.12). In this framework, we can

consider how evidence accumulation might occur. In response to the first evidence cue,

the network activity pattern would change based on the type of the evidence cue (left or

right cue) and the set of activity pattern transition probabilities at the time of the cue. In

response to the second evidence cue, the activity pattern would once again change based

on the type of the evidence cue and the set of transition probabilities associated with the

current activity pattern. Because the first evidence cue influenced the activity pattern at

the time of the second cue, and thus the transition probabilities, the activity pattern

resulting after the second cue would be in part a result of both the first and second cues.

This same process would be repeated for each subsequent cue. The resulting activity

pattern after all cues would therefore be influenced by each previous cue and thus contain

information about each of the previous cues. Because this process cascades, the order of

the evidence cues would be important. Each unique cue sequence would therefore result

in a unique activity pattern, even for the same net evidence. The accumulated evidence

cues would be represented generically as a sequence of inputs. In this case, a single

abstract variable for net evidence, in which the same final net evidence converges to the

same activity pattern, regardless of the cue sequence, is not expected to be present. Our

results and their extension therefore make predictions about population activity during
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evidence accumulation tasks.

A first prediction is that the population activity pattern should reflect not only the net

evidence but also the sequence of evidence cues on a trial independent of net evidence.

This prediction implies that different sequences of cues that result in the same net

evidence (e.g., left-right-left vs. right-left-left) should generate distinguishable activity

patterns (Figure 3.15e). To test this prediction, we selected trial epochs with the same

current cue (e.g., left) and the same net evidence (e.g., 1 left) but with different cue types

in the previous epoch, thus isolating effects due to the cue history. Trial epochs that had

the same cue type in the previous epoch had significantly higher trial-trial population

activity correlations than epochs with different cue types in the previous epoch (p < 10-9,

two-sample KS test; Figure 3.15a). Activity in an epoch could therefore be classified

above chance levels based on the type of cue in the previous epoch despite identical

current cues and net evidences (classification accuracy: 59.0 ± 2.2%, mean ± s.e.m.; p <

0.001, permutation test with shuffled trial labels). While this difference was highly

significant, it was relatively modest in amplitude, suggesting that it only accounted for a

small fraction of the total trial-trial variability. The activity difference for distinct

evidence sequences could reflect different internal accumulated evidence values due to

unequal weighting of early and late cues. However, similar results were obtained when we

restricted our analysis to the fifth and sixth cues, which were weighted similarly

behaviorally, and when we considered data from a mouse that weighted all cues equally

(Figure 2.4, see mouse marked in red; for both cases: p < 0.05, comparison of pairwise
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activity correlations for trials with the same or different previous cue, two-sample KS test;

Figure 3.5d). The population activity pattern therefore contained information about the

sequence of past evidence cues, independent of net evidence, which is consistent with our

findings of long-lasting modifications of dynamics by inputs to the PPC.

Another prediction is that the signal for the sequence of past evidence cues (independent

of a signal for net evidence) could underlie evidence accumulation in the population

activity. Accumulated evidence would therefore be represented implicitly as a sequence

of cues rather than explicitly as a single, abstract value such as net evidence. This

prediction suggests that population activity with strong signals for cue histories should

also have strong signals for evidence accumulation. Taking advantage of the variability

across imaging datasets, we found that our ability to decode the sequence of past cues

(given the same net evidence) was strongly correlated with the decoding of net evidence (r

= 0.84, p < 0.001; Figure 3.15b). This result indicates that the cue-driven modifications to

activity pattern transition probabilities leading to a cue history signal might also serve as

the algorithmic mechanism underlying evidence accumulation.
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Figure 3.15 (following page) | Analysis of neuronal activity related to evidence accumulation. a,
Cumulative distribution of the pairwise trial-trial population activity correlation coefficient for epochs with the same
(black) or different (green) previous cues, keeping net evidence, current cue, and epoch constant (e.g., LRLXXX
vs. RLLXXX trials at cue 3) (p < 10-9, two-sample KS test, n = 11 datasets). This analysis tested if neuronal
activity at a given epoch contained information about the previous epoch’s cue identity, independent of maze
epoch, current cue identity, and net evidence. b, For each dataset, the ability to classify net evidence (correlation
coefficient for predicted vs. actual net evidence using SVRs, e.g., as in Figure 3.3f) was compared with the
ability to classify the previous cue’s identity (independent of maze epoch, current cue identity, and net evidence,
as in (a)). Classification of previous cue and net evidence were highly correlated (r = 0.84, p < 0.001, n = 11
datasets), suggesting they might have related mechanisms. c, For a single trial at a given epoch, the accuracy
of predicting the next epoch’s cluster identity for that trial based on chance (black), knowledge of the evidence
cue only (orange), knowledge of the current cluster identity (green), or both (purple). Error bars represent s.e.m.
across 11 datasets. d, Schematic illustrating that because the population activity depends on both the inputs and
the near-past population activity, trials with the the same sequence of cues, but different starting points due to
different past events, will take different paths through activity space and ultimately result in distinguishable activity
patterns. For example, the red and dark red traces both experience the same same sequence of cues (LLL), but
start in different locations due to different trial histories, and therefore have different trajectories through activity
space. Each large circle with small circles inside of it represents the activity pattern of the network at a given
time point, with each small circle indicating the schematized activity of a neuron. Note that activity patterns are
transient and change over the course of a trial (see red trajectory). Despite the existence of multiple activity
patterns for the same variable (e.g., choice), a decision plane (gray) can be drawn which separates activity
patterns according to a given variable. Different decision planes can exist for other variables (e.g., previous trial’s
choice). e, Schematic depicting that trials with the same starting point and net evidence, but different sequences
of cues, will take different paths through activity space, resulting in multiple, distinguishable activity patterns. f,
Schematic demonstrating that transient events have a long-lasting impact on network activity by helping to create
a new activity pattern with different transition probabilities to future activity patterns. These events therefore
influence the set of activity patterns explored over seconds into the future. For example, if the network receives
input B, the network transitions to the cyan activity pattern. Trials in the cyan activity pattern at t1 are most likely
to transition to the orange activity pattern at t2, less likely to transition to the green activity pattern, and never
transition to the purple activity pattern. The identity of the input can therefore be decoded at t2 as a result of
these non-random transitions. Each large circle with small circles inside of it represents a possible activity pattern
of the network, with each small circle indicating the schematized activity of a neuron. The thickness of each arrow
indicates the probability of a transition between two activity patterns. The transitions between t0 and t1 indicate
the change in activity due to one of two inputs. Note that the activity patterns both within each time point and
across time points are highly different. Because the transition probabilities are probabilistic, memory of the inputs
gradually decays as activity patterns diverge, leading to a decrease in the optimal discriminability of inputs A and
B over time.
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Figure 3.15 | (Continued)
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A final prediction is that if the current activity pattern influences the transition

probabilities to future activity patterns, then both the current activity pattern and the type

of evidence cue should influence the activity pattern following a new evidence cue. We

compared trials with identical net evidence at the same epoch and asked if we could

predict the population activity pattern following a new evidence cue (either left or right

cue) based on a) the distribution of trials across clusters alone (chance), b) the new cue

type alone (cue only), c) the current activity cluster alone (cluster only), and d) both the

current activity cluster and the new cue type (cue + cluster) (Methods 5.7.1). We

performed this analysis in the cluster space to facilitate the analysis of transition

probabilities between activity patterns. Based on knowing the new cue’s type, there was

an increase in the ability to predict the identity of the next epoch’s activity cluster,

indicating that evidence cues triggered changes in population activity (p < 0.001 for cues

2-6; two-sample Student’s t-test). However, the identity of the current activity cluster was

more predictive of the next epoch’s activity cluster than was the new cue’s type (p < 0.001

for all cues; two-sample Student’s t-test; Figure 3.15c). Therefore, although new inputs

influenced the future population activity pattern, the past population activity pattern had a

larger effect, consistent with a role for the current activity pattern in defining the set of

possible future activity patterns.
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Chapter 4

Discussion and future experiments

4.1 History-dependent population dynamics

We have used new experimental and analysis methods to explore the activity in the PPC

neuronal population on single trials of an evidence accumulation task. These methods

extend approaches that have been applied previously during evidence accumulation tasks

in other animals (Yang & Shadlen, 2007; Gold & Shadlen, 2007; Raposo et al., 2014,

2012; Brunton et al., 2013; Hanks et al., 2015; Scott et al., 2015). Our work has identified

two features of PPC activity that together motivate a novel algorithmic model for how

evidence accumulation is performed in neuronal circuits. First, we have shown that each

event during a trial, such as a new evidence cue or a behavioral choice, modified the

dynamics of the PPC over a timescale of seconds. Surprisingly, the effect of each event,

including evidence cues, was not a change in the tonic activity of a specific set of neurons;

rather, each event altered the set of activity patterns that the population could occupy in

the future and thus the transition probabilities between complex population activity

patterns, often involving transitions between different sets of active neurons. This finding
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leads to a potentially generalizable rule in which transient inputs and activity patterns in

the PPC ‘reverberate’ as long-lasting changes in the set of possible activity pattern

transitions and trajectories, resulting in a short-term memory of each past input and

activity pattern (Figure 3.15d-f). This process was seemingly continuous in that the PPC

activity pattern never appeared to reset, even after a trial was finished; rather, the PPC

activity had an ongoing record of recent past events thus forming a continuous, gap-free

short-term memory. Our findings support and extend previous work that described the

PPC as an accumulator (Shadlen & Newsome, 1996; Gold & Shadlen, 2000; Yang &

Shadlen, 2007; Hanks et al., 2015; Britten & Shadlen, 1992; Horwitz & Newsome, 1999)

by proposing that accumulation might occur generally by means of ‘reverberation’ of all

network activity changes and by demonstrating that this accumulation could occur as long

timescale dynamics mediated by orderly transitions between transient and highly different

activity patterns.

Second, we have shown that trials of the same type (e.g., identical evidence cues and

choices) were highly variable, such that these trials did not converge to a single,

low-variance activity pattern, but were instead represented by widely varying patterns of

population activity (Figure 3.15d-e). The diversity of activity patterns emerged because

the PPC had information about many signals, including past events such as previous

choices, reward outcomes, and evidence cues. Variability can therefore be considered, in

part, as signals for non-measured or hidden parameters, beyond those parameters directly

tested in an experiment (e.g., choice or net evidence), with the remaining variance likely
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due to biological and measurement noise. The presence of hidden signals impacts our

analysis and interpretation of neuronal activity in that it may be inaccurate to consider

activity in layer 2/3 of PPC as specific for a set of measured task parameters and to think

of the representation of those parameters as a small set of noisy network activity patterns.

For example, the neuron-neuron activity correlation structure remaining after the

subtraction of activity resulting from a selected subset of task variables, typically referred

to as ‘noise correlations’, may reflect, in some cases, ‘residual correlations’ due to

additional signals in the PPC.

4.2 Importance of single-trial population analyses

Our findings therefore underscore the importance of analyzing population activity on

single trials. For example, averaging together highly variable trials might obscure

important information in the population dynamics. When we simulated a

pseudo-population of non-simultaneously recorded neurons (Methods 5.7.2), we lost the

ability to detect long timescale dynamics in the PPC. We could not for a given trial predict

future and past activity patterns based on the trial’s current population activity pattern

(Figure 3.7g), suggesting that simultaneously measured neuron-neuron correlations are

critical. Our new experimental and analysis methods thus combine and put into a new

context features identified in previous studies, including heterogeneous activity patterns

across neurons (Meister et al., 2013; Park et al., 2014; Jun et al., 2010; Raposo et al.,

2014; Rigotti et al., 2013), distributed representations of task stimuli including for
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non-relevant inputs (Mante et al., 2013; Safaai et al., 2013; Petersen & Diamond, 2000;

Rigotti et al., 2013), activity-dependent processing of stimuli (Harris & Thiele, 2011;

Safaai et al., 2015; Curto et al., 2009), and the encoding of previous stimuli that indicates

stimulus reverberation over time (Bernacchia et al., 2011; Donahue & Lee, 2015; Seo

et al., 2007; Seo & Lee, 2007; Nikolić et al., 2009; Klampfl et al., 2012; Seo et al., 2009;

Sugrue et al., 2004; Chaudhuri et al., 2015; Murray et al., 2014; Yang & Zador, 2012).

4.3 Inconsistencies with winner-take-all models

Our findings are inconsistent with traditional neuronal implementations of evidence

accumulation (Wong &Wang, 2006; Machens, 2005; Wang, 2002). These models propose

a winner-take-all competition that evolves over time between distinct pools of neurons,

reaching an attractor state once a choice has been made. These models rest on several key

predictions that were not apparent in our data. First, traditional implementations of

winner-take-all models predict that on different trials with the same choice the population

activity converges to the same, low variance pattern (attractor, which could potentially

take multiple possible forms, such as a point in activity state space or a trajectory). In

contrast, we found that the same trial types (and choices) did not converge to a single

pattern and instead consisted of highly different activity patterns. Second, published

model implementations propose that the neurons in a given pool have homogeneous and

long-lasting activity patterns. Instead, consistent with our previous results (Harvey et al.,

2012), we found that neurons in the PPC were highly heterogeneous, with transient and
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time-varying activity (Figures 3.3a, 3.4, 3.5a-b, 3.6d). Third, traditional winner-take-all

implementations predict that activity eventually reaches the same attractor state for all

identical choices, erasing the history of previous events. In contrast, we observed that,

throughout a trial, history signals were present for many events, including the sequence of

previous cues and outcomes from previous trials, suggesting that the population activity

must not have converged to a single attractor for each choice (Figures 3.12, 3.15a).

Finally, most implementations of winner-take-all competitions involve mutual inhibition

between competing pools of neurons that should result in negative population activity

correlations between trials with different choices. Instead, we observed a correlation

coefficient close to zero for such trial pairs (r = -0.01 ± 0.003, mean ± s.e.m. across

datasets). Although our results are inconsistent with current neuronal implementations of

winner-take-all dynamics, they could be consistent with emerging, but not fully explored,

models in which a winner-take-all circuit is embedded within a network with

history-dependent dynamics (Klampfl & Maass, 2013) or in which activity in a

winner-take-all circuit is drawn towards, but never converges to, dynamically changing

attractors.

Our experiments were not designed to test how accumulation might be used for

decision-making, such as in relation to drift-diffusion models. Often, accumulation and

drift-diffusion have been tightly linked to winner-take-all mechanisms, but we propose

that alternative algorithms and implementations, such as the one suggested by our results,

could underlie these processes. In this case, our results suggest that the accumulator
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would be leaky over the timescale of seconds because the timescale of structured

transitions we measured and of the memories of past events decayed over seconds. Also,

our results provide the important constraint that a single value for a decision variable

would likely be represented by many different activity patterns. Similarly, a decision

bound would likely be read out from a distributed representation of many signals such that

many different activity patterns might represent the same bound (Figure 3.15d-e).

4.4 A general rule for dynamics in the PPC

We propose a general rule for PPC dynamics in which any input that triggers a change in

activity will have a long-lasting effect on future activity patterns due the long timescale

dynamics of changes in transition probabilities. In the case of evidence accumulation, the

evidence cues would not be privileged over other inputs; rather, evidence cues, like all

other inputs, would help generate new activity patterns and thus new transition

probabilities to future activity patterns. With multiple evidence cues offset in time, the

changes in the transition probabilities would cascade such that the activity pattern

following a sequence of cues would in part be defined by, and thus contain information

about, the precise order of cues. Different sequences of cues would therefore result in

unique activity patterns, as we have shown (Figure 3.15a). As a result, the same net

evidence, choice, and likely decision variable would not converge to the same activity

pattern from trial to trial, but rather would form a diverse set of activity patterns. We

predict that prior to learning of a task, these activity patterns would not be associated with
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one another. Rather, through learning, the weights of connections onto a downstream

readout network could be modified to establish a decision plane for choice or a manifold

for net evidence. The readout network would therefore be able to associate the initially

arbitrary sets of activity patterns with a task-specific meaning and behavioral output, as

has been demonstrated in computational models (Buonomano & Maass, 2009; Briggman,

2005; Hoerzer et al., 2014) (Figure 3.15d). The low-dimensional projection in the readout

network could be consistent with previous recordings of ramping activity during evidence

accumulation tasks (Shadlen & Newsome, 1996; Yang & Shadlen, 2007; Hanks et al.,

2015; Britten & Shadlen, 1992; Horwitz & Newsome, 1999; Murakami et al., 2014). This

model argues that the PPC has the general role of a ‘reverberator’ of its inputs and that

evidence accumulation occurs as a specific example of this general feature. This new

model is consistent with the theoretical framework developed in reservoir computing

(Jaeger & Haas, 2004; Maass et al., 2002; Buonomano & Maass, 2009; Buonomano &

Merzenich, 1995; Verstraeten et al., 2007).

Importantly, our proposed algorithm offers significant advantages over a winner-take-all

competition. In a winner-take-all competition, evidence accumulation would occur

through an explicit, abstract signal for accumulated evidence. Such a signal is typically

implemented in a highly specialized network architecture, such as a point attractor

network, that is fine tuned for a specific type of input, such as visual cues during virtual

navigation in our case (Wong & Wang, 2006; Machens, 2005; Wang, 2002). In contrast,

our proposed model would allow for the same network to flexibly scale for
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decision-making with multiple alternatives and to perform computations relevant to many

diverse and novel tasks. This flexibility could be achieved through plasticity in readout

weights, rather than through the construction of a new circuit architecture for each task

(Legenstein et al., 2008; Gütig & Sompolinsky, 2006; Jaeger & Haas, 2004; Sussillo &

Abbott, 2009; Barak et al., 2013; Sussillo, 2014; Rosenblatt, 1958; Hoerzer et al., 2014;

Mante et al., 2013). We consider this advantage important for the PPC, which, as we have

shown, contains many signals in the same population of neurons and thus likely

contributes to many learned behaviors in parallel.

4.5 Developing neuronal implementations of history-dependent

dynamics

The current work primarily advances our understanding of the algorithm performed by the

PPCwhile providing some constraints on the neuronal implementation, such as a distributed

representation of task features, time-varying activity, and predictable transitions between

activity states defined by complex patterns of activity in the neuronal population. However,

to further improve our understanding of this model’s plausibility and how information is

processed in the PPC, future workwill be required to generate a variety of potential neuronal

implementations of this algorithm. These neuronal implementations could be based on a

variety of potential architectures. However, they should each make experimentally testable

predictions which will allow us to distinguish between them.
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4.6 Additional experimental tests

Our work suggests that layer 2/3 of the PPC may serve as a general purpose ‘reverberator’

whose goal is merely to maintain an implicit, distributed memory of inputs for as long as

possible. This architecture would be independent of specific tasks and could therefore be

generated early in life via mechanisms such as unsupervised learning. As an animal learns

a task, downstream readout networks would gradually converge to the appropriate readout

weights to optimally recover the identity of task-relevant inputs (Legenstein et al., 2008;

Gütig & Sompolinsky, 2006; Jaeger & Haas, 2004; Sussillo & Abbott, 2009; Barak et al.,

2013; Sussillo, 2014; Hoerzer et al., 2014). One potential advantage of this model is that,

because the reward signals used in mechanisms such as reinforcement learning are sparse

(Sutton & Barto, 1998), it may be easier to learn a limited set of readout weights than a

large number of recurrent weights.

If activity in layer 2/3 of the PPC serves as a general purpose reverberator of inputs in a

task-independent manner, its activity dynamics should not change much over the course of

learning. One would therefore expect that, even in animals early in training, task-relevant

events would remain discriminable over seconds. To test this result experimentally, one

could record the activity of neuronal populations before, during, and after learning of a

new task. If layer 2/3 of the PPC does in fact play the role of a general purpose

reverbarator of inputs, the activity dynamics should not change. However, if the internal

PPC dynamics remain unchanged over learning, but the impact of task-relevant events on

99



network activity increases over learning, task-relevant events may not be discriminable

early in training simply because they do not exert a pronounced impact on PPC activity.

The results of this experiment may therefore be difficult to interpret.

As a related analysis, one could train individual mice to perform multiple tasks within the

same behavioral session. If layer 2/3 of the PPC serves as a general purpose reverberator

of inputs, one would again expect that the activity patterns in the PPC would be remain

unchanged and therefore be similar in both tasks. Recently, Mante and colleagues observed

that during a variant of the random dot motion task in which monkeys had to discriminate

either color or motion on alternating blocks of trials, population activity in the PFC was

similar regardless of whether motion or color was behaviorally relevant (Mante et al., 2013).

This result is consistent with the predictions of our model, but further tests will be required

to determine whether this result generalizes to the PPC and other tasks.

Because our model postulates that the primary change over the course of learning is the

appropriate modification of readout weights, the prevalence of readout networks should

gradually increase over the course of learning. If these readout networks include the

neurons recorded previously (Gold & Shadlen, 2007; Hanks et al., 2015; Shadlen &

Newsome, 1996), we would expect these neural populations to grow in size, increase their

selectivity, or both during task learning. To test this experimentally, one could record

from populations of neurons known to exhibit task selectivity before, during, and after

learning. However, because these predictions are relatively unconstrained, the results of

these experiments may be difficult to interpret. For example, it is possible that individual
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neurons with high task selectivity exist merely as a byproduct of the history-dependent

dynamics described in Chapter 3. This would suggest that an explicit readout network

would not be necessary. However, an implicit readout network, in which a

high-dimensional, distributed representation is transformed into a different

high-dimensional, distributed representation might still be present. This result would still

be consistent with both our data and our model. We must therefore work to further

constrain these models to generate clear, testable predictions.

A variety of studies have recently provided support for the notion of a ‘hierarchy of

timescales’ across cortex, in which the time constant of neuronal activity is shorter in

areas closer to the sensory periphery, such as visual and auditory cortex, and longer in

association cortex, including PPC and PFC (Bernacchia et al., 2011; Murray et al., 2014;

Yang & Zador, 2012). This work has primarily focused on the time constant of activity for

individual neurons. However, one could use analyses similar to those described in Chapter

3 to instead measure the time constant of predictability for population activity in different

cortical areas. For example, if such a hierarchy exists, one might find that trial-trial

variability is predictive of future variability for longer in the PPC than in V1. While this

result would be consistent with the interpretation of previous work, it would suggest a

substantively different mechanism based on history-dependent population dynamics.

Because our model proposes that the PPC acts in a general-purpose manner, we would

expect that certain inputs to layer 2/3 of the PPC are not privileged over others. In other

words, inputs which are behaviorally relevant should not have a greater impact on PPC
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activity than inputs which are behaviorally irrelevant. To test this, one could design a task

which contains signals which are behaviorally irrelevant by design. For example, one could

use a variant of the fixed association evidence accumulation task in which cues can either

be black or white, but still appear on either the left or the right side of the T-maze. The

mouse’s goal would still be to determine whether more cues were on the left or the right,

regardless of the color of each cue. The location of each cuewould therefore be behaviorally

relevant, while it’s color would be behaviorally irrelevant. One could then ask whether cue

color could be decoded from PPC population activity independent of cue location. Because

cue location and color may have different visual salience, one would have to perform the

experiment in the opposite contingency as well (e.g., in which cue color is behaviorally

relevant, and cue location is behaviorally irrelevant).

4.7 Recreating history-dependent dynamics in silico with recurrent

neural networks

As a proof of principle experiment, it would be useful to demonstrate that such a model

could successfully perform tasks in silico. The first step of this experiment would be to

train a artifical neural network to recapitulate the dynamics observed in vivo, independent

of a specific task. As a first test, one could use a recurrent neural network (RNN) without

spiking (i.e., a rate network). One advantage of such networks is that effective techniques

for learning appropriate recurrent weights developed in computer science, such as

backpropagation through time, can be used (LeCun et al., 2015). However, in contrast to
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traditional supervised learning approaches in which RNNs are trained to produce a desired

output, the RNN in this experiment would be trained primarily to maintain

discriminability of inputs for as long as possible. Importantly, because neurons in layer

2/3 of the PPC exhibited transient dynamics (Figures 3.3a, 3.4, 3.5a-b), an additional

constraint imposing transiency would be added. This constraint would significantly

increase the difficulty of this task by forcing the RNN to maintain discriminability of

inputs through a variety of highly different activity patterns, as we observed. These

objectives can be formalized as a differentiable loss function which penalizes the

prolonged activity of individual neurons and rewards discriminability of inputs over long

timescales (for example, by encouraging the maximization of the Euclidean distance

between trial pairs with different inputs long after input offset). To test the similarity of

the RNN’s dynamics with those observed in vivo, analyses similar to those presented in

Chapter 3 could be used to ensure consistency with experimental results.

Once an RNN has been trained to produce history-dependent dynamics, the weights of the

RNN can be fixed. Readout networks would then be trained to perform a variety of tasks

as inputs are delivered to the RNN, including evidence accumulation and

delayed-match-to-sample tasks like those described in Chapter 2. A variety of learning

rules could be learned, including those which are biologically implausible, such as

backpropagation, as well as biologically plausible learning rules, such as those based on

local synaptic computations (Legenstein & Maass, 2014). If the same RNN with the same

weights can be used to perform a wide variety of tasks effectively (with different readout
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networks for each task), it would serve as an effective proof of principle that models based

on reservoir computing are plausible.

RNNs trained to recapitulate history-dependent dynamics could further be used to generate

novel experimental predictions. For this purpose, artificial neural networks (ANNs) possess

two key advantages over actual neural networks. First, ANNs provide the experimenter

with a perfect, noiseless measurement of the activity of every neuron in the network at

every time point. In contrast, our methods for monitoring activity in real neural networks

are limited both in the number of neurons we can simultaneously record as well as the noise

injected by our measurement techniques. Second, ANNs can be easily manipulated at a fine

scale. For example, in section 3.2.2, we found that task-relevant informationwas distributed

across large populations of neurons, including those neurons that were individually non-

selective for task features (Figure 3.3). However, we cannot directly test in vivo whether

neurons which have high choice selectivity are necessary for the neuronal computation.

In an ANN, however, we could easily set the activation of all highly selective neurons to

zero. The deficit in network performance in response to this targeted inactivation would

directly test the necessity of these neurons for these computations. Of course, ANNs also

have a critical disadvantage: they are artificial and may exhibit activity dynamics which are

radically different from those present in real neural networks. The advantages provided by

ANNs should therefore be used primarily for rapid in silico experiments, with the ultimate

goal of generating predictions which can be tested in real neural networks in vivo.

104



Chapter 5

Methods

5.1 Subjects

All experimental procedures were approved by the Harvard Medical School Institutional

Animal Care and Use Committee and were performed in compliance with the Guide for the

Care and Use of Laboratory Animals. Data were acquired from five male C57BL/6J mice

(Jackson Labs), which were 8-10 weeks old at the start of behavioral training, and 14-22

weeks old during imaging. Prior to training, a titanium headplate was affixed to the mouse’s

skull using dental cement (Metabond, Parkell). Mice were placed on a water schedule, in

which they received 800 μl of water each day (total, including rewards). Each mouse’s

weight was measured daily to ensure that it was 80% of the mouse’s pre-water-restriction

weight.
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5.2 Imaging

5.2.1 Surgical procedure

When mice performed well on maze 7 (Figure 2.3), they underwent a surgery (isoflurane

anesthesia) to implant a cranial window. For three days prior to surgery, mice were given

5 mL of water per day. The behavioral training headplate was removed, and a circular

craniotomy with a diameter of 3.1 mm was made over PPC on the left hemisphere

(stereotaxic coordinates: 2 mm posterior, 1.75 mm lateral of bregma). A virus mixture

containing a 4:1 volumetric ratio of tdTomato (AAV2/1-CAG-tdTomato) to GCaMP6

(AAV2/1-synapsin-1-GCaMP6f or AAV2/1-synapsin-1-GCaMP6m) was delivered by

three injections of ∼20 nL (∼5 min/injection, ∼150 μm spacing between injections).

Viruses were obtained from the University of Pennsylvania Vector Core Facility.

Injections were made near the center of the craniotomy, ∼275 μm below the dura, using a

beveled glass pipette (∼15 μm tip diameter) and a custom air pressure injection system.

The pipette was advanced using a micromanipulator (Sutter MP285) at a 30-degree angle

to minimize compression of the brain. A window with glass plug (5 mm diameter

coverslip plus two 3 mm diameter coverslips; #1 thickness; CS-3R and CS-5R, Warner

Instruments) was made using UV-curable optically transparent adhesive (Norland Optics).

The window was affixed to the brain using a drop of Kwik-Sil (World Precision

Instruments) and affixed to the skull using Metabond mixed with 5% vol/vol India ink, to

prevent light leakage. A headplate was affixed to the skull using Metabond mixed with
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India ink. A titanium ring was mounted on top of the headplate to interface with a cylinder

of black rubber to surround the microscope’s objective lens, thus preventing light leak

from the VR display into the microscope (Dombeck et al., 2010). Following at least one

day of recovery, mice resumed training. Imaging began at least 4 weeks post-injection and

was continued for up to 12 weeks. Fields-of-view containing cells with GCaMP6 in the

nucleus were excluded. In a given session, we imaged 350 neurons simultaneously during

300 trials (range, 188-648 neurons; range, 231-414 trials; n = 5 mice; Figure 3.2).

5.2.2 Two-photon microscope design

Imaging was performed using a custom-built two-photon microscope. The microscope

scan head included a resonant scanning mirror and a galvanometric mirror separated by a

scan lens-based relay telescope. Fluorescence light collection optics were based on a

custom design to collect wide dispersion angles from large (20 mm) back aperture

objectives. Collection optics were housed in an aluminum box to prevent light

interference from the VR display. The microscope was stationary, and the mouse was

mounted on an XYZ translation stage (Dover Motion). Green and red emission light were

separated by a dichroic mirror (580 nm long-pass, Semrock) and bandpass filters (525/50

and 641/75 nm, Semrock) and collected by GaAsP photomultiplier tubes (Hamamastu).

Excitation light was delivered from a Ti:sapphire laser (Chameleon Vision II, Coherent)

operated at 920 nm. The microscope was controlled by ScanImage (version 5; Vidrio

Technologies) (Pologruto et al., 2003).

107



5.2.3 Imaging data acquisition

Imaging data were acquired at 30 Hz at a resolution of 512 x 512 pixels (∼700 μm x ∼700

μm field-of-view) using a Nikon 16x 0.8 NA objective lens. Imaging and behavioral data

were synchronized using custom-written MATLAB software by simultaneously recording

the frame clock from Scanimage and an iteration counter fromViRMEn. Imaging data were

acquired in sets of 25,000 frames with brief breaks between acquisitions to ensure alignment

of the scans. Up to 100,000 frameswere acquired from each imaging session over the course

of ∼1 hour. Imaging data were acquired from single planes at depths between 100 and 200

μm below the dura. Multiple fields-of-view were acquired from the same mouse across

different days. Data were analyzed from 11 fields-of-view from 5 mice.

5.2.4 Pre-processing of imaging data

Motion correction, the definition of putative cell bodies, and extraction of fluorescence

traces (ΔF/F) were performed in a semi-automatic fashion using custom-written

MATLAB software (manuscript in preparation). In brief, following motion correction

(Greenberg & Kerr, 2009), the correlation of fluorescence timeseries was calculated for

each pair of pixels within 60 μm of one another. Fluorescence sources (putative cells)

were then identified by applying a continuous-valued, eigenvector-based approximation of

the normalized cuts objective (Shi & Malik, 2000) to the correlation matrix, followed by

discrete segmentation by k-means clustering, yielding binary masks for all identifiable

fluorescence sources. For each putative cell, the local neuropil fluorescence was estimated
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by averaging across nearby pixels devoid of fluorescence sources. The scale of neuropil

contamination of the cell fluorescence was estimated by regressing the background

timeseries against low-activity regions of the cell timeseries, and the scaled background

timeseries was then subtracted from the cell timeseries. Cell selection and neuropil

subtraction were performed using a tool that allowed manual examination of clustering

results and parameters, in combination with anatomical information and fluorescence

traces corresponding to each cluster. All neuropil contamination fits were also examined

by eye and adjusted when necessary. All fluorescence traces were deconvolved to

estimate the probability of a spike in each frame (estimated spike count) (Vogelstein et al.,

2010), which minimized the impact of the indicator’s decay kinetics on our analyses.

Similar results were obtained from the non-deconvolved ΔF/F traces (Figure 5.1).

5.3 Data analysis

5.3.1 General analysis procedures

Data were grouped into spatial bins (3.75 cm/bin) corresponding to locations in the virtual

maze. To bin data from positions in the arms of the T-maze, the T-maze was linearized

prior to binning by folding the arms such that they were a continuation of the stem.

Neuronal activity and behavioral parameters were averaged in each bin. On average, each

bin contained 2-3 imaging frames per trial. Unless otherwise noted, all analyses were

performed on both correct and error trials together. All correlation coefficients were from

Pearson’s correlations. Portions of this research were conducted on the Orchestra High
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Performance Compute Cluster at Harvard Medical School. This NIH supported shared

facility consists of thousands of processing cores and terabytes of associated storage and is

partially provided through grant NCRR 1S10RR028832-01.
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Figure 5.1 (following page) | Main results re-analyzed using ΔF/F values. a, Classification accuracy for
choice as a function of maze position (SVM, radial basis function kernel). Independent classifiers were trained
and tested at each maze position. Error bars represent mean ± s.e.m. across datasets. Compare to Figure
3.3e. b, Actual net evidence vs. net evidence predicted by a SVR classifier. Error bars represent mean ± s.e.m.
across datasets. Compare to Figure 3.3f. c, For a given trial based on the current epoch’s cluster identity, the
accuracy of predicting the clusters occupied by that trial in the past and future epochs, compared to shuffled
assignments of trials to clusters. Error bars represent mean ± s.e.m. across datasets. Compare to Figure
3.9e. d-e, Classification accuracy as in (a), but for previous trial’s choice and for whether the previous trial was
rewarded (e). Compare to Figure 3.12b-c. f, Cumulative distribution of the pairwise trial-trial population activity
correlation coefficients for trials with the same (black) or different (green) previous cues given the same maze
epoch and same net evidence (p < 4 x 10-7, two-sample KS test). Compare to Figure 3.15a. g, Relationship
between classification accuracy of the previous cue and the classification accuracy of net evidence across
datasets (r = 0.76, p < 0.001). Compare to Figure 3.15b.
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Figure 5.1 | (Continued)
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5.3.2 Choice selectivity for individual neurons (Figure 3.3a-c)

Normalized activity was calculated for each neuron individually by dividing its estimated

spike count within each bin on each trial by its maximum across all bins of all trials (Figure

3.3a-b). To calculate the left-right choice selectivity index (Figure 3.3c), for each neuron

individually, we calculated its average activity for each spatial bin separately across left 6-0

trials and right 0-6 trials. The selectivity index was defined as:

Selectivity index =
μleft6−0 − μright0−6

μleft6−0 + μright0−6

A selectivity index of +1 corresponds to a neuron which is active exclusively on left 6-0

trials, while a selectivity index of -1 corresponds to a neuron which is active exclusively

on right 0-6 trials. A selectivity index of 0 corresponds to a neuron with equivalent mean

activity in both conditions. The selectivity index for each neuron was calculated separately

for each spatial bin, and the peak selectivity index was calculated as the maximum of the

absolute value of the selectivity index across all bins. For the shuffled distribution, we

shuffled the trial labels (i.e. which trials were left 6-0 or right 0-6), and recalculated the

selectivity index as above.

5.4 Classifiers (without clustering)

5.4.1 General procedures (Figures 3.3e-h, 3.5c, e-h, 3.12b-d, 3.13)

Unless otherwise noted, all population classifiers were support vector machines (SVMs)

with a radial basis function (Gaussian) kernel (Murphy, 2012; Smola & Vapnik, 1997).
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All population classification was performed on the concatenated activity of all individual

neurons. All SVMs were implemented using the MATLAB interface of the open-source

libsvm library (version 3.20) (Chang & Lin, 2011). Data were divided into

non-overlapping training/validation and test sets (50% of trials each). To prevent

overfitting, models were trained exclusively on the training/validation set, with the test set

left untouched until final testing. Hyperparameter (C and γ; regularization weight and

radial basis function width, respectively) selection was performed using a random search

method with 10-fold cross-validation on the training/validation set of only a single dataset,

and the same hyperparameters were used for all datasets. For classifiers applied to the

activity of individual neurons (Figure 3.3d), classifiers were trained with the activity of

the given neuron as the only input feature. For population classifiers (Figures 3.3e-h, 3.5c,

e-h, 3.12b-d, 3.13), the activity of all neurons in the population were used as the input to

the SVM.

5.4.2 Two-class classifications (Figures 3.3e, g, 3.5c, 3.12, 3.13 5.1a, d-e)

For two-class classification problems, such as the classification of the choice (Figures 3.3e,

g, 3.5c), previous trial’s choice (Figure 3.12b), and previous trial’s reward outcome (Figure

3.12c), a C-Support Vector Classification (C-SVC) approach was used. Independent SVMs

were trained on each spatial bin. In cases where classification accuracy based on neuronal

data was compared with accuracy based on behavioral data (Figure 3.13), hyperparameters

were optimized separately for each.
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5.4.3 Regression for net evidence (Figures 3.3d, f, h, 3.5e-h, 5.1b)

For the regression of net evidence (Figures 3.3d, f, h, 3.5e-h), an ε-Support Vector

Regression (ε-SVR) approach was used to obtain a continuous approximation of net

evidence (Murphy, 2012; Smola & Vapnik, 1997; Chang & Lin, 2006). For the net

evidence models, the average activity during the third quarter of each cue’s presentation

(∼200 ms) was calculated for each neuron. For training and testing, each cue was treated

as a separate trial with class labels corresponding to the net evidence including that cue.

Training and testing sets were divided based on whole trials to prevent similar activity on

different cues within the same trial from corrupting the results. To determine prediction

accuracy, the predicted class label was compared to the actual class label via a correlation

coefficient. To calculate statistical significance, the results were compared to the

distribution resulting from 1000 shuffles of class labels. To rule out categorization, which

would result in identical guesses within left and right net evidence conditions, but a

positive slope across all net evidence conditions, we calculated significance separately

within left and right net evidence conditions; both were statistically significant across

mice for the population classifiers (p < 0.001; Figure 3.3f). To exclude the impact of view

angle alone, which changes the visual scene, on net evidence classification, we

recalculated the ε-SVR separately for left and right trials with nearly identical view angles

(±2.5°; Figure 3.5e-f). To exclude the impact of view angle in conjunction with other

behavioral parameters, such as the x/y position in the maze and the rotational velocity of

the spherical treadmill, we trained SVR classifiers to predict net evidence based on either
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behavioral parameters alone or behavioral parameters in addition to neuronal population

activity (Figure 3.5g-h).

5.4.4 Classifiers built by adding-in subsets of neurons (Figure 3.3g-h)

Classifiers were built similar to the population classifiers described inMethods 5.4.1, except

with the input being a subset of neurons. The single neuron choice selectivity and SVR net

evidence correlation were used to determine single neuron selectivity for choice and net

evidence, respectively. Neurons were sorted in ascending order based on their selectivity.

A separate classifier was trained for increasingly larger populations of neurons with neurons

added in from least to most selective.

5.4.5 Classification of cue sequences (Figures 3.5d, 3.15a-b, 5.1g-h)

To determine if the identity of previous cues could be read out at a current epoch, given

identical current cue and net evidence (Figures 3.5d, 3.15a-b), we examined pairwise trial-

trial population activity correlations. At each of cues 3-6, we separated trial into those which

contained the patterns LRL (left-right-left) and RLL (right-left-left) or LRR and RLR with

the last cue in the pattern matching the currently analyzed cue. For example, at the third

cue, the pattern LRLRRR would be a match, while at fifth cue, the pattern RRLRLR would

be a match. To rule out predictability due to differences in net evidence, a subset of trials in

which the distribution of net evidence was equivalent across the two groups was used. This

procedure resulted in eight groups (2 choices x 4 patterns). At each cue epoch, pairwise

trial-trial correlations of the mean neuronal population activity vector for n simultaneously
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imaged neurons were calculated for trials with the same previous cue or different previous

cues. To predict the previous cue based on these correlations, in a leave-one-out fashion,

the mean population activity correlations between the test trial and all other trials with a

left or right previous cue were calculated; whichever previous cue had a higher correlation

with the test trial was considered the prediction of the classifier. To determine significance,

accuracy was compared to the distribution of accuracies resulting from 1000 shuffles of the

labels assigning previous cues to trials.

5.5 Analysis of activity in high-dimensional state space

5.5.1 Factor analysis (Figures 3.12a, 3.14)

For visualizations using factor analysis (Figures 3.12a, 3.14), dimensionality was reduced

to 5-factors using built-in MATLAB toolboxes. Two factors were selected from these five

for visualization.

5.5.2 Relationship between pairwise trial-trial distances before and after cue

presentation (Figure 3.10a-b)

To calculate the correlation between the distance between trials before and after a cue(s)

(Figure 3.10a-b), trials were divided into groups based on the number of cues presented

between measurements (e.g. Δ2 cues is equivalent to measuring before the first cue and

after the second cue or measuring before the third cue and after the fourth cue). Within

each group, only trials with the same marginal cues and starting net evidence were
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compared. The Euclidean distance in n-dimensional activity space between pairs of trials

was calculated before (pairwise starting distance) and after (pairwise ending distance) the

marginal cues were presented. Across all pairs of trials within each group, the Pearson

correlation coefficient of the population activity on each trial was calculated. To

determine significance, we generated new ending states for each trial by shuffling the

distribution of vectors which define the change in activity in response to cues and adding

them to the original starting states. Vectors were calculated by subtracting the

n-dimensional vector corresponding to the starting state from the vector corresponding to

the ending state. This step was necessary to rule out the possibility that the network

activity changed little in comparison to the original distance between trials. For example,

if two trials were separated by a distance of 10 estimated spikes, but the activity only

changed by 0.1 estimated spikes, the pairwise ending distance would be expected to

remain strongly correlated with the pairwise starting distance, regardless of the direction

of the vectors. A p-value was then calculated by comparing the correlation coefficient to

the distribution obtained from 1000 such shuffles.

5.5.3 Relationship between pairwise trial-trial distances and population activity

vectors (Figure 3.10c-d)

To calculate the correlation between the distance between trials before the presentation of

a cue and the vector which results from the response to the cue (Figure 3.10c-d), trials

were divided into groups and paired in the same fashion as described above. Vectors were

calculated as described above. For each pair of trials, the similarity between vectors was
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calculated by determining the Euclidean distance between the two vectors. Across all

pairs of trials within each group, the Pearson correlation coefficient between the pairwise

starting state distance and the pairwise vector distance was then calculated. Significance

was determined by comparing the correlation coefficient to the distribution obtained from

1000 shuffles of the vector trial identities.

5.6 Clustering methods (Figures 3.6, 3.7, 3.8, 3.9, 3.11 3.15c, 5.1c, f)

We used clustering to reduce the dimensionality of the population activity in as unbiased a

fashion as possible, without inclusion of information about behavioral parameters and

without encouraging projection of the data onto dimensions which maximize variance due

to specific task features, such as choice. We used clustering because it did not assume

linearity in the data structure and facilitated analyses by discretizing activity patterns,

allowing for the calculation of transition probabilities between discrete activity states.

However, clusters were not considered an indication of discreteness of the underlying

activity patterns. Clustering revealed groups of trials with similar population activity

patterns (Figure 3.6a-c).

5.6.1 Pre-processing for clustering

Prior to clustering, each spatially binned trial was divided into ten non-overlapping epochs,

corresponding to the start of the trial, cues 1-6, the early and late delay, and the turn. For the

trial-start epoch, neuronal activity was averaged over the 4 spatial bins (15 cm) immediately
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preceding onset of the first cue. For cues 1-6, activity was averaged over the third quarter

of each cue’s presentation (4 spatial bins). For the early and late delay, respectively, activity

was averaged across the 4 spatial bins beginning 15 and 37.5 cm after offset of the final cue.

For the turn, activity was averaged across the final 4 spatial bins in the maze. Each epoch

corresponded to approximately 200 ms.

5.6.2 Clustering via affinity propagation

Within each epoch, trials were clustered into groups based on their neuronal activity using

affinity propagation (Frey & Dueck, 2007). Affinity propagation has two inputs: a

distance matrix and a ‘preference’ for each data point. We calculated the distance as the

negative sum of pairwise Euclidean distance and one minus the pairwise cosine similarity

between every trial in the n-dimensional activity space (each dimension is the activity of a

single neuron). In contrast to other clustering methodologies, such as k-means clustering,

the preference parameter does not specify the number of clusters, but rather a general

range. For example, in our experience, clustering on different datasets using the same

preference parameter can result in anywhere from 1 to 30 clusters. To determine the

preference parameter, we calculated the number of clusters generated across a range of

preference parameter values. The tenth percentile of the difference matrix was within a

stable range, such that small modifications in the preference parameter did not greatly

influence the number of clusters identified. The choice of this parameter and the resulting

number of clusters had little impact on our results (Figure 3.7g). Clustering was only used

for analyses in which dimensionality reduction was necessary. Affinity propagation was
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performed using code provided by the laboratory of Brendan Frey.

5.6.3 Transition probabilities between clusters (Figures 3.6, 3.7, 3.9)

To calculate transition probabilities between clusters at different maze epochs (cluster a at

epoch 1, cluster b at epoch 2), we calculated the fraction of trials in cluster a which were

also in cluster b. To superimpose behavioral variables on clusters (Figures 3.6e-h, 3.9a-c),

for each cluster, we calculated the fraction of trials that had a given feature. For example,

to superimpose left choice probability, we calculated the fraction of trials in each cluster

that resulted in a left choice. To validate that the clustering found meaningful groups, we

analyzed whether the distribution of behavioral variables across clusters at a given epoch

was significantly different than chance. To calculate chance, we shuffled the cluster labels

such that the number of trials in each cluster was maintained, but with the trials assigned

to a given cluster determined randomly (Figure 3.7a-d). Significance was established by

summing the absolute difference in behavioral variables from the expected uniform

distribution for the real data and comparing this total difference to the distribution of the

same metric obtained from 1000 shuffles (Figure 3.7b, d). To determine whether there

was a relationship between the similarity of clusters at adjacent epochs and the transition

probability between them, for each pair of adjacent clusters, we calculated the mean

pairwise trial-trial population activity correlation and compared it to the transition

probability (as defined above). Transitions were not significantly more likely between

more similar clusters (r = 0.02, p > 0.05).
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5.6.4 Clustering based on all time points together (rather than epoch-by-epoch

clustering) (Figures 3.6l, 3.7f)

To determine if clustering separately at each epoch resulted in multiple clusters with similar

population activity patterns in different epochs, we also performed clustering on all epochs

together. While the total number of clusters for epoch-by-epoch-based clustering was larger

than those for all-epoch-based clustering (ratio: 1.6 ± 0.06), the ratio was relatively low,

suggesting that activity patterns were distinguishable across epochs. Self-transitions were

identified as transitions across epochs in the all-epoch clustering in which a trial was in the

same cluster at two consecutive epochs (Figure 3.7f). To determine whether the variability

of trials in cluster space changed over the course of a trial, we also calculated the fraction

of the total clusters explored at each maze epoch (Figure 3.6l). To remove outliers, only

clusters containing three or more trials at a given epoch were counted as visited.

5.7 Classifiers based on activity in cluster-space

5.7.1 Classification of the cluster identity at past and future epochs based on the

cluster identity at the current epoch (Figures 3.7k, 3.9d-e, 3.15c, 5.1c)

To predict the past or future cluster identity during a trial at a certain epoch (epoch j),

given the cluster identity at another epoch (epoch i), we implemented a classifier built in

cluster-space (Figure 3.9d-e). In a leave-one-out fashion, we limited our analysis to only

the trials which were in the same cluster as the test trial at epoch i. Of those trials, we then

122



asked which cluster was most common at epoch j. The classifier then predicted that the

test trial would also be in that cluster at epoch j. Prediction accuracy was calculated as the

fraction of predicted clusters that matched the actual cluster. In Figure 3.9d-e, clustering

was performed separately on correct left 6-0 and right 0-6 trials to rule out structured

variability due to different cues or behavioral choices. Accuracy was calculated across

both of these conditions. To establish statistical significance, accuracy was compared to

1000 shuffles of the assignment of trials to clusters. Cluster assignments were shuffled

independently at each epoch. This shuffle maintains the distribution of trials across

clusters. This classifier was identical to the ‘cluster only’ classifier used in Figure 3.15c,

except in Figure 3.15c, it was applied to all trials together, independent of evidence or

choice. The other classifiers used in Figure 3.15c followed a similar logic. For the

‘chance’ classifier, the same procedure was followed, except all trials except for the test

trial were used to determine the most likely cluster at epoch j, not just those in the same

cluster at epoch i. For the ‘cue only’ classifier, only those trials with the same current cue

(left or right) were used to determine the most likely cluster at epoch j. For the ‘cue +

cluster’ classifier, only those trials with both the same current cue as the test trial and

which were in the same cluster at epoch i were used to determine the most likely cluster at

epoch j.
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5.7.2 Classification of past and future cluster identities with simulated

pseudo-populations (Figure 3.7g)

The temporal structure we observed could be caused by the prolonged activity of individual

neurons, either due to persistent activity in the underlying neuronal activation or to the

prolonged decay kinetics of the calcium indicator. To test if prolonged activity patterns

could account for temporally structured and predictable trial-trial variability, we shuffled the

trial labels independently for each neuron across trials with the same choice and sequence

of evidence cues (e.g. correct left 6-0 trials; Figure 3.7g). This shuffle therefore breaks

neuron-neuron correlation structure, but maintains the temporal structure of each neuron’s

individual activity, simulating a pseudo-population. Following this shuffle, clustering was

performed (separately for correct 6-0 left and 0-6 right trials), and past and future activity

patterns were classified as described above using the ‘population activity only’ classifier.

In contrast to the unshuffled case, we were unable to predict past and future activity patterns

over more than one epoch (Figure 3.7g), suggesting that the predictability we observed in

the real data could not be explained by prolonged activity or slow indicator kinetics.

5.7.3 Classification of past and future cluster identities based on behavioral data

(Figure 3.11)

To determine the fraction of past and future predictability accounted for by variability in

behavioral parameters across clusters, we used logistic regression to compare

predictability based only on behavioral parameters to that based on both behavioral
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parameters and neuron activity-defined clusters (Figure 3.11). To allow for binary

classification, only trials whose cluster identity contained either the most or second most

trials during the prediction epoch were included. We used all recorded behavioral

parameters (x/y position, spherical treadmill rotational velocities, view angle) for this

analysis, which together account for the mouse’s general running pattern and visual scene.

At each epoch, we trained a logistic regression model to predict the activity pattern at the

current epoch or at another epoch in the past or the future based on either the behavioral

variables alone (behavior only) or the behavioral variables in addition to the current cluster

identity (behavior + neuronal activity clusters). Note that for the same epoch, we did not

include neuronal clusters as an explanatory variable as they were identical to the response

variable in that case. To compare model performance across the two cases, which have

different numbers of predictors, we used adjusted R2. Independent models were created

for each combination of epochs and combined based on the number of epochs separating

the predictor and response (e.g. cue 1 and cue 2 are separated by 1 epoch, while trial start

and turn epochs were separated by 9 epochs). Separate models were calculated for left 6-0

and right 0-6 trials to rule out behavioral variability induced by the choice. Results were

qualitatively similar when models included linear interaction terms and quadratic terms.

5.7.4 Classification of behavioral errors based on cluster identity (Figures 3.9g)

To determine whether behavioral errors were uniformly distributed across clusters (Figure

3.9g), we clustered trials based on their population activity patterns at the trial start, before

any cues had been presented. Because differences in activity were likely to be subtle, we
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used a conservative clustering approach, which resulted in more clusters. Thus, we used

a preference parameter equivalent to the thirtieth percentile of the distance matrix. The

distribution of the probability of a behavioral error across these clusters was then calculated.

To determine statistical significance, we calculated the expected number of errors in each

cluster based on the overall error rate and the number of trials in each cluster and calculated

the total absolute difference from the uniform expected error rate in each cluster. This metric

was compared to a shuffle of the assignments of trials to clusters.

5.8 Analysis of the overlap of active neurons across clusters (Figure

3.3k)

To calculate the overlap fraction for active neurons between clusters, each neuron’s activity

across all trials was z-scored. Within each cluster, each neuron’s mean z-scored activity was

calculated and compared to a z-score activity threshold of 1.5 (Figure 3.3k), though similar

results were obtained using different thresholds. Neurons whose mean z-scored activity

was above this threshold were determined to be active. Using correct left 6-0 and right 0-6

trials separately to rule out differences due to evidence cues, the pairwise overlap fraction

between all clusters at each epoch was calculated as:

Overlap fraction =
number of neurons with activity above threshold in both clusters
number of neurons with activity above threshold in either cluster

The mean value across all pairs of clusters at all epochs was calculated. For the
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intra-cluster measure, trials within a cluster were randomly divided into two groups, the

mean activity within each group was calculated for each neuron, compared to the z-score

threshold, and the overlap fraction between the two groups was calculated. This process

was repeated 100 times and the results were averaged. The mean across all clusters was

then calculated. To reduce variability due to low trial numbers, only clusters (intra-cluster

measure) or cluster pairs (inter-cluster measure) with greater than 20 combined trials were

included. To determine the shuffled overlap fraction, the cell labels within each cluster

were randomly assigned 1000 times, and the inter-cluster overlap fraction was

recalculated.
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